
39

SmartCon: Smart Context Switching for Fast Storage IO Devices

JONGMIN GIM, Texas A&M University
TAEHO HWANG, Hanyang University
YOUJIP WON, Hanyang University
KRISHNA KANT, Temple University

Handling of storage IO in modern Operating Systems assumes that such devices are slow and CPU cycles are
valuable. Consequently, to effectively exploiting the underlying hardware resources, e.g. CPU cycles, storage
bandwidth and etc., whenever an IO request is issued to such device, the requesting thread is switched out
in favor of another thread that may be ready to execute. Recent advances in non-volatile storage technolo-
gies and multicore CPUs make both of these assumptions increasingly questionable, and an unconditional
context switch is no longer desirable. In this paper, we propose a novel mechanism called SmartCon that
intelligently decides whether to service a given IO request in interrupt driven manner or busy-wait based
manner based on not only the device characteristics but also dynamic parameters such as IO latency, CPU
utilization, and IO size. We develop an analytic performance model to project the performance of SmartCon
for forthcoming devices. We implement SmartCon mechanism on Linux 2.6 and perform detailed evaluation
using three different IO devices: Ramdisk, low-end SSD, and highend SSD. We find that SmartCon yields
upto 39% performance gain over the mainstream block device approach for Ramdisk, and upto 45% gain for
PCIe based SSD and SATA based SSD’s. We examine the detailed behavior of TLB, L1, L2 cache and show
that SmartCon achieves significant improvement in all cache miss behaviors.

Categories and Subject Descriptors: D.4.2 [Operating System]: Storage Management

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Non-volatile memory, Solid State Disk, Context switch, I/O Subsystem

ACM Reference Format:
Jongmin Gim, Taeho Hwang, Youjip Won, and Krishna Kant, 2013. SmartCon: Smart Context Switching for
Fast Storage IO Devices. ACM Trans. Storage 9, 4, Article 39 (March 2013), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The evolution of computer technology has traditionally seen rapid increase in CPU and
memory speeds but relatively modest increase in the speed of magnetic disks, which
have been the mainstay of secondary storage for quite some time. However, a variety of
factors are converging together to change the landscape dramatically. The single core
CPU performance began to stall around 2005 [HenkPoley 2014], and the much of the

This work is supported by IT R&D program MKE/KEIT (No. 10041608, Embedded System Software for New-
memory based Smart Device), and partially supported by IT R&D program MKE/KEIT. [No.10035202, Large
Scale hyper-MLC SSD Technology Development]. This research was also supported by the MSIP (Ministry of
Science, ICT&Future Planning), Korea, under the ITRC (Information Technology Research Center) support
program (NIPA-2014- H0301-14-1017) supervised by the NIPA (National IT Industry Promotion Agency).
Author’s addresses: J. Gim, Electrical and Computer Engineering, Texas A&M University; T. Hwang and
Y. Won (Corresponding Author), Division of Electrical and Computer Engineering, Hanyang University; K.
Kant, Dept. of Computer & Info. Science, Temple University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1553-3077/2013/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:2 J. Gim et al.

increase in computing power since then has been in terms of number of cores. This
trend is expected to continue in the foreseeable future. This coupled with our inability
to effectively parallelize the applications beyond a few cores in most cases [Kasikci
et al. 2013] means that we are likely to see many poorly utilized cores on a die. In
other words, CPU cycles are no longer quite as precious as they used to be [Ahmadi
and Maleki 2010].

On the storage side, the DRAM latency has also stalled, even though the maximum
DRAM throughput continues to go up (the so called “memory wall” phenomenon). How-
ever, the solid-state non-volatile storage technology has made great strides. Not only
do we have relatively mature NAND and NOR flash storage technologies, there is
also a host of new non-volatile memory (NVRAM) technologies, with increasing per-
formance, some of which could rival or beat DRAM performance [Burr et al. 2008].
These technologies include SpinRAM, Magnetostrictive RAM (MRAM), Spin Torque
Transfer MRAM (STT-MRAM), Ferroelectric RAM (Fe-RAM or FRAM), among others.
Fig. 1 shows the read and write latencies for some of the technologies based on the
data presented in references [Qureshi et al. 2009; Li et al. 2008; Hosomi et al. 2005;
Electronics 2005; Jung et al. 2010]. This convergence between main memory and sec-
ondary storage has been well recognized by now [Coburn et al. 2011; Volos et al. 2011;
Akel et al. 2011; Venkataraman et al. 2011; Chen et al. 2014; Yang et al. 2012; Lantz
et al. 2014] and calls for rethinking of the traditional storage access methods and hi-
erarchies, as discussed later in related work. In this paper, we address an orthogonal
issue, that also needs to be reexamined as the storage device speeds increase – namely
OS context switches.

 0

 40

 80

 120

 160

 200

PR
AM

D
R
AM

FR
AM

M
R
AM

STT-M
R
AM

N
O
R

N
AN

D

T
im

e
 (

n
s
e

c
)

Read

Write
6.5 (us)

15 (us)

220 (us)

Fig. 1. Access Latency of Memory Devices

Mainstream Operating Systems use context switches to handle IO in order to share
valuable CPU cycles among different processes. The convergence of memory and stor-
age, coupled with the emergence of many core CPU demands a more flexible access
scheme. In this paper, we discuss an intelligent context switch mechanism called
SmartCon to decide whether to switch the context over to another thread in case
of storage access or simply stall as done currently for main memory accesses. The
switching decision is based upon the static (i.e., dependent on device type) as well as
the dynamic (i.e., one that accounts for current conditions such as CPU utilization, IO
latencies, etc) attributes of the system.

Although the idea of adaptive context switch is conceptually straightforward, its
manifestation in a real system is not. In particular, a straightforward adaptive scheme

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:3

could result in worse or sometimes significantly worse performance than the current
practice of context switch based IO.

The contribution of our work is three fold. First, we develop elaborate context switch
decision mechanism which dynamically determines whether to do context switch or
not by incorporating the device latency, CPU utilization and IO size. We implement our
mechanism in commodity OS (Linux 2.6.) with minimal CPU overhead. Second, we per-
form comprehensive performance experiments and explore the effectiveness of Smart-
Con in various respects. We use three representative storage devices: (i) RAMDisk,
i.e., secondary storage simulated in a part of DRAM, (ii) a low-end SSD connected to
the host via SATA, and (iii) a high-end SSD which is connected to host via PCIe link
and has 12 GByte of device cache. To make the experimental results more reliable and
comprehensive, we run performance benchmark with both CPU intensive and IO in-
tensive workloads. Third, we develop an analytical performance model that enables us
to predict the performance of SmartCon for other non-volatile random access memory
(NVRAM) technologies, e.g. PRAM, STT-MRAM, etc.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Section 3 examines the various types of context switch overheads and the notion of fast
IO device. Section 4 describes the organization of SmartCon. In section 5, we explain
the details of SmartCon decision mechanism. Section 6 presents an analytic model for
projecting system performance of SmartCon and Section 7 discusses detailed results
of our experimental evaluation. Finally, section 8 concludes the paper and points out
areas for further work.

2. RELATED WORK
In recent years there has been a tremendous amount of interest in exploring emerg-
ing NVRAM technologies, using them in creative ways, and coping with their idiosyn-
crasies (e.g., very long write times, limited life-time, different write latencies for 0
and 1, etc.). NVRAM technologies that are slower than DRAM but cheaper can be
used with main memory semantics with DRAM acting as a cache. Such an arrange-
ment can help reduce memory power consumption, which constitutes an increasing
percentage of total platform power [Kant 2008]. Recently, a number of works have
proposed new system architecture to exploit PRAM as DRAM alternative or use it as
cache [Wu et al. 2009; Lee et al. 2009; Qureshi et al. 2010]. A number of works have ex-
amined new types of file systems to exploit the byte addressability and non-volatility of
byte addressable NVRAM [Ipek et al. 2009; Jung et al. 2009]. NV-Heap [Coburn et al.
2011] and Mnemosyne [Volos et al. 2011] proposed new types of heap management
framework to provide the persistency on the data object in NVRAM while managing
NVRAM area as heap. Venkataraman et. al. [Venkataraman et al. 2011] propose new
data structure called Consistent Durable Data Structure (CDDS) which uses version-
ing to provide atomic operation on the byte addressable non-volatile storage. PCRAM
based SSD ONYX has shown that it can achieve better performance than high end
SSD for IO less than 2 KByte [Akel et al. 2011] IO size.

The above works deal with abstraction issue on byte addressable NVRAM, but do not
address the issue of scheduling the accesses on the respective device. The scheduling
issue – in particular whether or not to switch context upon IO initiation – is orthogonal
and becomes relevant when the NVRAM IO latency is within 1-2 orders of magnitude
of main memory access latency. For example, if NVRAM is used as a cache between
the high speed DRAM and slow disk levels, a context switch on access to NVRAM
may or may not be desirable depending on the NVRAM speed and access size. For
concreteness, in the following we evaluate SmartCon in the traditional block storage
IO context, but it is clear that the same techniques can be applied to other models of
NVRAM access. Jeong et. al. applies busy-wait based IO in Smartphone and shows that

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:4 J. Gim et al.

IO throughput increases as much as 13% especially when a number of CPU intensive
processes compete for CPU [Jeong et al. 2013].

The context switch behavior has been a subject of extensive research efforts. Ouster-
hout et. al. [Ousterhout 1990] examine the reason why overall system performance
does not scale well with the increase in the hardware speed and conclude that context
switch overhead is the main cause for that. Chuanpeng et. al. [Li et al. 2007] show
that cache pollution caused by context switch plays a significant role in overall system
performance degradation. Kobayashi [Kobayashi 1986] use three typical workloads
to analyze the effect of cache pollution in a context switch. Starner et. al. [Starner
and Asplund] analyze cache pollution in embedded real-time systems and propose a
method to identify its origin. Cache exhibits entirely different behavior under multi-
processor [Agarwal et al. 1988] and multicore environments [Yan and Zhang 2008;
Tam et al. 2007]. Yan. et. al. [Yan and Zhang 2008] develop a tool to analyze the in-
terference in the L2 cache shared by multiple cores. Francis et. al. [David et al. 2007]
partition the context switch overhead into two: direct cost and indirect cost. Direct
cost corresponds to CPU scheduling overhead, time to store and load register values to
and from memory, and the time for switching memory map (page table). Indirect cost
corresponds to the time for warming up the cache. They find that indirect cost of con-
text switch is an order of magnitude larger than the direct cost. Liu et. al. [Liu et al.
] develop a model for direct and indirect cost of context switch and also analyze the
relationship between cache miss and context switch. McVoy et. al. develop a method to
measure the context switch overhead [McVoy and Staelin 1996].

A context switch not only corrupts the L2 cache but also affects the behavior of TLB
(Translation Lookaside Buffer). A number of works attempt to improve the TLB miss
overhead caused by context switch. Yamada et. al. [Yamada and Kusakabe 2008] pro-
pose to incorporate the overhead of updating address map into CPU scheduling. In
selecting the process from ready queue, their CPU scheduler favors the threads that
use the same address map as the current thread. This is to minimize the overhead in-
volved in updating the address map. This scheme becomes particularly effective when
the system is running multiple applications each of which is designed to exploit thread
level parallelism (TLP). Wiggins et. al. [Wiggins et al. 2003] propose a software method
to maintain process ID for TLB entry. Venkatasubramanian et. al. [Venkatasubrama-
nian et al. 2009] show that TLB management overhead is one of the most significant
performance bottleneck in multicore based VMs and recommend separate tagged TLB
for individual virtual platforms.

The issue addressed in this paper also arises in the context of locking; i.e., spin-locks
vs. blocking for protecting access to critical regions. The crucial issue is whether it is
preferable to spin or block when requesting a lock. Since the optimal strategy depends
on the duration of time the lock is held and the overheads involved, several adaptive
methods are have been proposed [Karlin et al. 1991]. For example, a simple strategy
is to spin for a while and then block, but more sophisticated schemes based on the
prediction of lock holding time may show better performance when accurate prediction
can be made. Ryan Johnson et. al. [Johnson et al. 2009] make an argument similar
to our paper in the case of multi-core processors: as the number of cores increases, the
optimal point shifts in favor of spinning.

Another related issue that has long been studied in the OS context is busy-wait
vs. interrupt based handling of external events. Interrupts cause uncontrolled context
switches thereby resulting in effects such as pollution of cache and TLB which can
hurt performance. On the other hand, busy-wait wastes resources. Schemes to address
this tradeoff include prioritized busy-wait, interrupt coalescing, and dynamic switch-
ing between the two [Salah and Qahtan 2009].

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:5

Table I. CPU platform (Core i7 has 8MB 16 way L3.)

Platform Speed L1 Cache L2 cache

Intel Core-i5 2.67 GHz 32 KB (8 way) 256 KB (8 way)
Intel Core-2Duo 1.86 GHz 32 KB (4 way) 4 MB (16 way)
Marvell PXA320 806 MHz 32 KB (32 way) 256 KB (4 way)

Asynchronous IO or AIO is a complementary direction for improving IO performance
by attempting to reduce (rather than increase) application blocking for IO comple-
tion[The Open Group Base Specifications Issues 6 IEEE Std 1003.1 2003; Elmeleegy
et al. 2004; Bhattacharya et al. 2004]. AIO allows the applications to issue multiple IO
requests with a single system call and to overlap the IO request with other processing.
AIO can eliminate extra threads and can reduce the context switch overhead. Although
AIO and SmartCon both strive to make IO more efficient, they are intended for dia-
metrically opposite ends in terms of IO latency. SmartCon is intended for the storage
devices with very small latency (e.g., emerging NVRAM technology based storage de-
vices) whereas AIO is intended for storage devices with large IO latency. To reduce the
number of context switches, SmartCon avoids context switch by tying up the CPU for
a single IO request whereas AIO bundles multiple IO requests in a single system call
and has designated thread handle to these requests via select/poll/callback. In this pa-
per we focus on how SmartCon performs against traditional non-bundled IO and leave
its comparison against other possibilities including AIO for future work.

3. CONTEXT SWITCH OVERHEAD FOR STORAGE IO
3.1. Direct Overhead
Context switch is categorized into two types [Liu et al.]: (a) Direct overhead, that
includes the cost of saving, restoring processor registers, pipeline flush and scheduling,
and (b) Indirect overhead, that includes performance degradation caused by L2 cache
pollution and TLB warm up. We measure the overhead of context switch for three
different platforms shown in Table I.

In measuring the context switch overhead, we use lat ctx module of LMBENCH
benchmark suite. It creates a number of processes (upto 20), and connects all processes
by a ring of Unix pipes. Each process reads a token from its pipe, and writes it to
the next -process. Context switch overhead is computed based upon the time interval
between writing a token to a pipe by one process and reading the token from the pipe
by the next process. This approach is developed by McVoy et.al [McVoy and Staelin
1996] and is widely used to examine the context switch overhead in various platforms.

We compiled lat ctx module with ”-O0” option in order to ensure zero sized token.
With this definition, the direct cost includes all overhead related to switching the pro-
cess when there is no cache pollution. It includes not only the hardware overhead of
saving and restore hardware context, e.g. TLB flush, CPU pipeline flush, saving and
restoring register sets, but also includes various software overheads such as switching
address maps and crossing the kernel barriers.

Fig. 2 illustrates the results. The direct costs in Fig. 2(a) are at least 30-50 times that
of the read cycle of non-volatile memories shown in Fig. 1. For embedded microproces-
sors as shown in Fig. 2(b), this ratio increases to 250. The context switch overhead
becomes relatively more significant for faster storage devices.

3.2. Indirect Overhead: Cache Pollution
Performance degradation caused by context switch mostly comes from the pollution
of data cache. To measure this impact, we allocate an integer array of size N Byte,
e.g. 512 KByte, to each process. The process computes the sum of all elements in the

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:6 J. Gim et al.

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

C
S
 T

im
e
 (
u
s)

Number of Processes

Intel Core-2Duo

Intel Core-i7

(a) Intel Core-i7 and Core2Duo

 10

 20

 30

 40

 2 4 6 8 10 12 14 16 18 20

C
S
 T

im
e
 (
u
s)

Number of Processes

(b) Marvell PXA 320
Fig. 2. Direct Overhead of Context Switch

integer array and then hands over the CPU to the next process. This operation causes
the entire array to be loaded into the cache. We vary the size of this array from 32
KByte to 10 MByte and measure the total time for performing the summation. We use
three different CPU’s: Intel Core-i7, Intel Core2Duo, and Marvel PXA 320.

Fig. 3 shows the context switch (CS) time as a function of working set size for the 3
CPUs. In Fig. 3, the context switch overhead including direct and indirect components
can be as large as 120 us, 150 us, and 1 ms for Intel Core-i7, Intel Core-2Duo and
Marvell PXA 320 processors, respectively. The read latency of PRAM, FRAM, MRAM
and STT-MRAM corresponds to 68 ns, 70 ns, 35 ns, and 35 ns, which are still smaller
than context switch overhead of modern microprocessors. The read latency of NAND
flash is 200 µsec [Electronics 2005]. When these devices are used as secondary storage
devices, switching the context when performing an IO operation may not justify its
overhead. This provides the basis for the smart context switch mechanism explored in
this paper.

0
0.03

0.06

0.09

0.12

0.15

0.18

 1
6

0

 3
2

0

 6
4

0

 1
2

8
0

 2
5

6
0

 5
1

2
0

 1
0

2
4

0

C
S

 T
im

e
 (

m
s)

Working Set Size (KB)

Intel Core-2Duo

Intel Core-i7

(a) Intel Core-i7 and Core2Due

0

0.2

0.4

0.6

0.8

1.0

1.2

 2
0

 4
0

 8
0

 1
6

0

 3
2

0

 5
0

0

C
S

 T
im

e
 (

m
s)

Working Set Size (KB)

(b) Marvell PXA 320

Fig. 3. Indirect Overhead: Cache Pollution

3.3. Fast Storage Devices
In this paper, we introduce the new term, ’fast’ storage device. NAND flash based stor-
age devices, e.g. Solid State Drives (SSD), improve the IO latency by orders of magni-
tude. High-end SSD’s [FusionIO 2010] use PCIe interconnect which is much faster and
can be placed closer to CPU. The newly emerging NVRAM technologies such as PRAM,
STT-MRAM, and FRAM are expected to be used as storage as well as memory [Fre-
itas and Wilcke 2008]. The access latency of these new types of NVRAM is expected
to be comparable to that of DRAM [Samsung Electronics 2007]. Recently, some of the
block device controllers, e.g. SSD RAID, are equipped with gigabyte of DRAM as cache

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:7

and are attached to the northbridge of a platform. The above mentioned devices are
orders of magnitude faster and quicker and we call them Fast IO Devices as illus-
trated in Fig. 4. Fig. 4(a) is hardware RAID with tens of gigabyte DRAM cache, is PCIe
connected and uses SSD as its storage component [Caulfield et al. 2010]. Fig. 4(b) il-
lustrates high-end NAND flash SSD which is PCIe connected and has several Gbytes
of DRAM cache. In Fig. 4(c), Byte-addressable NVRAM is attached to system bus via
mainstream DRAM or NOR flash interface and is accessed in the same granularity as
DRAM.

Process

Memory Management

Page CacheFile System

Hardware RAID Device Driver

SSD

RAID Controller Fast Cache

Cache SSD Cache

(a) Hardware RAID Model

Process

Memory Management

Page CacheFile System

I/O Memory Virtual Storage Layer

Fusion I/O
Fast Cache

controller

(b) Fusion I/O Model

Process

Memory +
Filesystem Management

NVRAM

(c) Storage Class Memory Model

Fig. 4. Examples of Fast Storage IO Devices

Based upon the type of threads the CPU is handed over to, we can categorize the
context switch into three types: (i) between the kernel threads, (ii) between the differ-
ent user threads, and (iii) self context switch. When a process blocks as a result of IO
request, CPU scheduler hands over CPU to another user thread if there is any (type ii)
thread. When there is no other process, IOWait daemon (kernel thread) takes over the
CPU, stalls CPU until the IO request completes, wakes up the blocked process which
has issued the IO request and hands over CPU to the process which is woken up. This
is type (iii) and we specifically name it as self context switch.

3.4. Type of Context Switches
There are two types of context switches: voluntary context switch and involuntary con-
text switch [Liu et al.]. A voluntary context switch occurs when a thread blocks wait-
ing for a resource. Involuntary context switch occurs when a thread has used up its
time quantum or higher priority thread has arrived. I/O accesses to most mainstream
storage devices, e.g. hard disk, RAID device, SATA based SSD and PCIe based SSD,
trigger voluntary context switch. It is worth nothing that ramdisk driver in the main-
line Linux kernel [Jones 2006] performs programmed IO and thus voluntary context
switch does not occur. To be discussed in detail in the section 7.1, experimental setup,
we develop ramdisk driver which handles the IO in context-switch based manner. We
modify the existing block device driver [Corbet et al. 2005] so that it can be used with
ramdisk and perform context switch [Liu et al.]. We use the modified context switch
based ramdisk driver to examine the benefit of busy-wait based IO against interrupt
driven IO.

4. ORGANIZATION OF SMARTCON
We carefully argue that as the newer storage device technology, e.g. non-volatile byte
addressable memory, and interface technology, e.g. light peak [Intel 2011], PCIe, NVMe
[Huffman 2012] emerge, the Operating System should adopt a newer mechanism that
determines context switch policy in a more flexible and dynamic manner. We propose
a novel IO subsystem mechanism SmartCon, which dynamically determines the IO

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:8 J. Gim et al.

service policy, context-switch vs busy-wait, properly incorporating the device charac-
teristics as well as the state of the CPU and the IO device for which a request is des-
ignated. We design SmartCon with the following three objectives: (i) the decision has
to be dynamic; the IO subsystem should apply context switch based IO or busy-wait
based IO subject to the type of storage device, e.g. IO latency as well as the state of
the system, e.g. CPU utilization, (ii) there should be no side-effect; busy-wait based IO
should not affect the performance of the other processes, and (iii) the overhead should
be minimal; the overhead of maintaining and probing the state of the system (CPU
utilization) and the IO device should be negligible.

In SmartCon, the device type is accessed in every IO operation. The location of the
device type critically affects the overall IO performance. We choose to embed device
type information in the request queue data structure instead of device data structure.
Since request queue is always accessed in every IO request no matter what accessing
device type information does not incur additional memory access when it is embedded
in request queue. SmartCon IO subsystem consists of three modules: Device monitor,
System monitor, and SmartCon Decision Module. Fig. 5 illustrates overall organization
of SmartCon IO subsystem.

VFS

Filesystem

Generic Block Layer

Device Queue

Device Driver

System Monitor
(CPU Utilization)

Device Monitor
(device type, IO latency)

Device
registration Phase

IO length

Decision module
- IO size
- Device Type
- IO latency
- CPU utilization
- IO queue state

Smartcon

Fig. 5. Organization of SmartCon

4.1. Device Monitor
Device monitor is responsible for determining the IO size threshold and obtaining the
device queue length for a given IO. If the IO size is larger than a certain threshold, it
is better to switch context to the other process from the system throughput’s point of
view. For each device, SmartCon establishes threshold value for IO size beyond which
IO request is serviced with context switch. When a storage device is added to the sys-
tem, the Device Monitor examines the IO latencies for different IO sizes from 4 KB to
512 KB with and without context switch, respectively and finds the IO size where the
difference between IO latencies with and without context switch respectively, becomes
negligible. This probing phase takes less than one minute according to our experiment.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:9

For RevoDrive [OBrien 2013] and Intel X25M G1 [Schmid and Roos 2008], the thresh-
old IO size is 64KB according to our physical experiment.

For a given IO, SmartCon examines the size of a given IO requests as well as the size
of all preceding IO requests in the queue. This is because SmartCon needs to estimate
the total time a given IO request for which the CPU will be blocked for completing the
IO request.

SmartCon categorizes the IO device into three types: very fast, fast and mainstream.
IO for mainstream device is always serviced with context-switch. IO for very fast device
is always serviced with busy-wait. IO’s for fast device are serviced either by busy-
wait or by context-switch subject to the decision of SmartCon. Typical example for
’very fast’ device can be ramdisk. Since ramdisk IO is implemented via memory copy
operation, it is always beneficial to service ramdisk IO in busy-wait mode. The non-
volatile RAM devices, e.g. STT-MRAM, FRAM, PC-RAM and etc some of which are
already commercially available, can be good candidates for very fast device.

In Linux, each storage device is allocated a request queue. In the current implemen-
tation of Linux 2.6, 4 byte data structure is allocated to each queue to represent the
status of the queue and only 22bits are being used. We allocate two bits for SmartCon
decision from the unused portion of the request queue status data structure. These
two is to denote whether a given device is ’mainstream’ and whether a given device is
’very fast’.

4.2. System Monitor
SmartCon establishes a threshold value for CPU utilization. The System Monitor ex-
amines the CPU utilization if there are sufficient CPU cycles available for stalling.
This is to prohibit the SmartCon enabled IO subsystem from monopolizing the CPU
and from degrading the overall system performance.

The CPU threshold is governed by a number of factors, the most important one being
the number of available hardware threads. We measure the CPU utilization for busy-
wait driven IO in Core-i5. We read 256 MB file from RevoDrive with varying IO sizes
from 4Kbyte to 64 KByte. Table II shows the result. Busy-wait driven IO entails 25%
CPU utilization in Core-i5 and 44% for Intel Core2Duo, respectively. For RevoDrive
device, SmartCon sets threshold for CPU utilization as 75% and 55% for Intel Core-i5
and Intel Core2Duo, respectively.

There are two key implementation issues in system monitor. First, measuring the
CPU utilization should not entail any significant overhead. Second, we need to deter-
mine the proper length of the measurement window. The current CPU Stat structure
of the Linux Kernel carries four counters for CPU usage: IOWait, Idle, System, and
User. For each timer interrupt, one of these fields is incremented and the CPU uti-
lization is computed as the ratio of the increment in a given field against the sum of
the increments for all fields. Since we examine CPU utilization for every IO request,
special care needs to be taken to make the overhead of measuring and computing CPU
utilization minimal. We find that the CPU overhead of adding up all four counters
in every IO request is prohibitively large, which makes the SmartCon dysfunctional.
We introduce on additional 64bit counter total CPU stat which is incremented for ev-
ery timer interrupt. CPU utilization is obtained by dividing the respective counter by
total CPU stat. The additional overhead caused by CPU monitoring activity of Sys-
tem monitor corresponds to one additional division operation for each timer interrupt.
Most of the kernel data structures are designed with cache line size in mind. The exist-
ing CPU Stat structure is 56 bytes long; therefore, with an 8 byte Total CPU stat field,
the CPU statistics object is still cache aligned.

Determining the right observation window size is of critical importance for Smart-
Con to function properly. With coarse grained observation, SmartCon may not be able

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:10 J. Gim et al.

to properly capture the IO and CPU load on the system and cannot make right deci-
sion on context switch. The CPU utilization of Linux kernel is updated at every timer
interrupt. The default resolution frequency of the timer interrupt in Linux kernel is
100 or every 10 msec. We use the default one since 10 msec resolution is sufficient
for most applications and increasing the interrupt frequency puts higher load on the
system. We run the experiment a number of times with different observation window
sizes: from 50 to 1000ms. Observations become noisy and the observation accuracy
gradually decreases with smaller window size. According to our experiment, we find
that window size of 100 msec is a reasonable compromise between the accuracy, system
load and the sampling noise.

IO Request

Submit IO

to block device

I/O Completion

Busy Wait?
Yes

No

Busy-wait

Service IO

Context Switch

Service IO

In PageCache?
yes

no

Copy to user

Device Queue

Resume
Decision module: Busy Wait?

yes

yes

yes

yes

no

yes

SmartCon

no

no

no

no

Fig. 6. SmartCon Overview

5. SMARTCON DECISION MECHANISM
5.1. Algorithm
The SmartCon Decision Module collects the system information from Device Monitor
and System Monitor. It examines the IO size and decides whether to switch context or
not for a given IO operation.

Fig. 6 illustrates the flow of SmartCon enabled IO subsystem. The smartCon deci-
sion module examines four conditions. SmartCon carefully lays out the order in which
the individual conditions are examined so that the overall overhead of examining the
conditions are minimized.

SmartCon first examines two bits to quickly rule out mainstream devices and very
fast devices. It then examines the IO size and the queue length of the device, which
further eliminates cases where context switch will occur routinely. The CPU utilization
is examined in the last step since this is the most time consuming task among the four.

SmartCon incorporates the overhead of servicing backlog of the IO requests in mak-
ing decision for context switch. SmartCon examines the request queue and computes
total IO size for the requests in the queue. If total IO size is greater than IO size
threshold, SmartCon performs context switch to service the respective IO request.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:11

 0

 20

 40

 60

 80

 100

SmartCon
Q =1

SmartCon
Q=0 Mainstream

B
a

n
d

w
id

th
 (

M
B

/S
)

(a) Read Performance

0

20

40

60

80

SmartCon
Q =1

SmartCon
Q = 0 Mainstream

C
P

U
 u

ti
li

za
ti

o
n

 (
%

)

iowait system

(b) CPU Utilization

Fig. 7. Device-load aware Context Switch under different max IO sizes, (Q: Queue Length)

Table II. Threshold for Core-i5 using RevoDrive

IO Size user (%) sys (%) total (%) MaxCPU (%)

4KB 0.06 25.03 25 75
8KB 0.07 25.02 25 75

16KB 0.06 25.03 25 75
32KB 0.05 25.06 25 75
64KB 0.02 25.07 25 75

We ran IOzone benchmark with 4KB IO size and examined the number of outstand-
ing requests in the request queue with Intel X25M G1. Fig. 7(a) shows the Read perfor-
mance and Fig. 7(b) shows the CPU utilization for 3 cases: (a) Smartcon that disables
busy wait mode if the device has at least one other IO pending or in progress when
the IO is initiated, (b) Smartcon that does busy wait only when there is no other IO
in progress when the IO is requested, and (c) Mainstream (i.e., no busy wait). Average
request queue length is 1.09. In Fig. 7(a), by incorporating device-load aware context
switch, SmartCon achieves 15% performance increase. ’Q’ in Fig. 7 denotes the max-
imum request queue length (as seen by the arriving IO request) beyond which the
SmartCon disables busy-wait mode. We find that for Q=0 and 1, SmartCon yields the
almost identical performance and CPU utilization.

5.2. Overhead of SmartCon
Busy-wait based IO consumes more CPU cycles than interrupt driven IO does. We ex-
amine the CPU overhead caused by busy-wait based IO. We read the file sequentially
with context switch based and with busy-wait based IO and compare the CPU uti-
lization. We use PCIe attached high performance SSD (RevoDrive3) and use direct IO
option to disable the filesystem prefetch and the buffer cache. Fig. 8 illustrates the re-
sults. There are two important messages from Fig. 8. First, busy-wait based IO service
indeed consumes significantly more CPU cycles than Context-switch based IO service
ranging from twice the CPU cycle for 4KByte to 8 times the CPU cycles for 512KByte,
respectively. Context switch based IO becomes more CPU efficient with larger IO size
since larger amount of data is transferred per context switch. Second, when there are
sufficient amount of available CPU cycles, the available CPU cycles can be used to im-
prove the overall system performance. In context switch based IO service, CPU cycles
used by system and the IOwait thread together denote the total CPU cycles involved
in servicing the IO request. From total CPU utilization in context switch based IO ser-
vice, significant fraction of CPU cycles (from 25% up to 45%) is consumed by IOWait.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:12 J. Gim et al.

 0

 5

 10

 15

 20

 25

 30

 35

context sw
itch

busy-w
ait

context sw
itch

busy-w
ait

context sw
itch

busy-w
ait

context sw
itch

busy-w
ait

context sw
itch

busy-w
ait

context sw
itch

busy-w
ait

context sw
itch

busy-w
ait

context sw
itch

busy-w
ait

C
P

U
 u

ti
li

za
ti

o
n

 (
%

)

4K 8K 16K 32K 64K 128K 256K 512K

iowait system

Fig. 8. CPU utilization: Seq. Read in mainstream and SmartCon IO (RevoDrive)

6. ANALYTIC MODELING OF SMARTCON
One of the critical concerns for practitioners in using NVRAM device is to predict the
IO performance for different latency NVRAM devices. For some slow NVRAM device,
it might be better to use context switch based IO rather than busy-wait based IO.

We develop analytical model which project the performance of a given NVRAM de-
vice. The Cycles Per Instruction (CPI) is a key metric for analytic modeling and can be
expressed in terms of platform and workload parameters [Kant and Won 1999]. The
context switch behavior impacts the cache behavior and hence the CPI. It also adds to
memory access latency and may also increase path length, i.e., number of instructions
executed per user transaction. The CPI can be formulated as in Eq. 1.

CPI = CPIbase + PL2 ∗ τmem + τTLB (1)
where CPIbase represents the base CPI (i.e., CPI with infinite amount of L2 cache

and no need to go to the memory); PL2 denotes the L2 cache miss probability; τmem

and τTLB are the effective memory access latency and effective TLB access latency,
respectively. Effective memory access latency incorporates the average overhead of
fetching the respective page from the storage device, when the targeted cacheline is
not available in DRAM.
CPIbase can be further broken down as in Eq. 2

CPIbase = CPI0 + τcache (2)
where CPI0 denotes the cycles per instruction and τcache denotes the effective la-

tency of accessing instruction and data cache at L1 and L2 level. τcache can be formu-
lated as τcache = τL1+PL1 ∗ τL2. The effective memory access latency, τmem in Eq. 1 can
be formulated as Eq. 3.

τmem = τmem0 + Pmem ∗ τIO (3)
where τmem0, Pmem, and τIO denote memory access latency for a cacheline, mem-

ory miss probability, and the access latency of the IO device, respectively. The unit of
memory access is a cacheline (64B in our system), and the unit of storage device access
is a page size (4KB in our system). Because we set the experimental environment as
sequential workload and 4KB IO size, the Pmem0 can be simply calculated as 1.6%,
(64B/4096B)*100. The IO access latency in Eq. 3, τIO, can be formulated as in Eq. 4.

τIO = τnvram + Pctx ∗ τctx (4)
where τnvram denotes the base access latency of the NVRAM device, and τctx and

Pctx denote the context switch overhead and the probability of context switches, re-
spectively. Since the experiment was done in ramdisk, the τnvram is same to τmem0 *

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:13

Table III. Parameters for Analytical Model, (Each τnvram corre-
sponds to τmem0*64 for the DDR clock)

ITEM SmartCon Mainstream

CPU Utilization 32.9% 35.7%
Normalized Path Length (l) 1 1.14
CPI (CPI0) 1 cycle 1 cycle
L1 latency (τL1) 3 cycle 3 cycle
L1 miss prob. (PL1) 0.115 0.244
L2 latency (τL2) 14 cycle 14 cycle
L2 miss prob. (PL1) 0.000255 0.000324
TLB latency (τTLB0) 2.0 cycle 2.0 cycle
TLB miss prob. (PTLB) 0.124 0.133
Context Switch overhead (τctx) 1488 cycle 1488 cycle
Context Switch prob. (Pctx) 0.00316 0.00778
Memory miss prob. (Pmem) 1.56 1.56
DRAM 533MHz (τmem0) 111.88 111.88
DRAM 800MHz (τmem0) 74.4 74.4
DRAM 1067MHz (τmem0) 55.94 55.94

64; where the cacheline size and the block size correspond to 64byte and 4KByte. The
effective TLB access latency, τTLB in Eq. 1 can be formulated as in Eq. 5.

τTLB = τTLB0 + PTLB ∗ τmem0 (5)

where τTLB0, PTLB , and τmem0 denote the TLB access latency, TLB miss probability,
and the latency of accessing a memory cache-line, respectively.

Based upon overall CPI, path length (the number of instructions) and the CPU uti-
lization, we can obtain or project performance ratio for different storage systems (un-
der the same workload).

Let U denote the CPU utilization, ` the path length, or the number of instructions
per user level transaction, and f the processor frequency. Then the transaction rate
supported by the CPU is given by U × f/(CPI × `). Consequently, for two variants of
the system, say i and j, the relative performance (ρ) is given by:

ρ =
CPIi
CPIj

`i
`j

Uj

Ui
(6)

The calibration parameters for this model were obtained by running IOZONE bench-
mark (sequential read, 256 MB file size, 4 KB IO size) on the Intel Core2Duo (1.86
GHz) platform with 2 GB of DRAM. We ran the experiment five times and take the
average. In each run, we rebooted the target computer to minimize variability in the
cache hit rate. The resulting parameters are shown in Table III. Although most of
these parameters remain unaffected by the NVRAM storage device in use, some would
change. In particular, the CPU utilization would change, but we assume that the frac-
tional change remains invariant within the range of NVRAM device parameters that
we consider. Similarly, although the actual path length will change, we again assume
that the fractional path length change remains as shown – namely, 14% lower for
SmartCon. Based on these parameters and assumptions, we attempted to validate our
model against the measured results for RAMDISK. For comprehensive validation, we
ran physical experiments under three different DRAM clock settings as shown in Table
IV.

According to Eq. 6, the model predicts relative performance of 1.23 - 1.24 for Smart-
Con, whereas the experiments show improvements of 1.21 - 1.23, for 533Mhz, 800 Mhz

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:14 J. Gim et al.

Table IV. Measured and Projected Normalized Per-
formance of SmartCon against mainstream Context
Switch based IO

RAMDISK Speed Model Measured
(DDR Clock) Performance Performance

533 Mhz 1.24 1.21
800 Mhz 1.23 1.22

1067 Mhz 1.24 1.23

Table V. Characteristic of Devices used in our experiment

Ramdisk SSD RevoDrive

Model DDR2 800Mhz Intel X25M G1 OCZ OCZ revodrive 3 x2
Capacity 2GB 80GB 480GB

Cache Size NA 16MB NA
Byte addr Y N N

Data Trans. CPU DMA DMA
Max Bdw 1.2GB/s 250MB/s 1500MB/s
Interface DIMM SATA2 PCIe 2.0

and 1067 Mhz DDR clock settings, respectively. This is an excellent match for a very
simple model proposed here, and we believe that the model is adequate to estimate per-
formance improvements if the RAMDISK were to be replaced by real NVRAM based
storage with characteristics similar to those for DRAM.

7. PERFORMANCE EVALUATION
7.1. Experimental Setup
Smartcon was implemented on Block Device Layer of Linux Kernel 2.6.32 (Ubuntu
10.01). In SmartCon, OS adopts different action after OS inserts the request to the re-
quest queue (make request). In context switch based IO service, OS calls IO schedule()
and the process is switched as a result. IO schedule() is the kernel function of Linux
OS. It saves the registers of the currently running thread and inserts the thread to
the set of blocked processes. In busy-wait IO, the OS skips calling IO schedule().
Then, in both cases, the OS dispatches the IO request to the device via calling
generic unplug device.

We examine the performance of SmartCon IO subsystem for three different storage
devices each of which is carefully chosen to represent the characteristics of the differ-
ent categories of storage devices: RAMDISK [msdn 2010], low-end SSD [Park and Shen
2009], and high-end SSD [FusionIO 2010]. To examine the effect of CPU clock speed
and the number of CPU cores, we use Intel Core2Duo for low-end SSD and Core-i5
platforms for high-end SSD, respectively. Table V illustrates the device characteris-
tics.

To ensure comprehensiveness of our performance study, we use three benchmarks,
IOZone, Postmark [Katcher 1997], and Filebench [McDougall and Mauro 2005]. IO-
Zone and Postmark benchmarks are used to generate data intensive IO and metadata
intensive IO, respectively. Using postmark, we examine the number of file creations
per second, varying the size of created files. Filebench is used to generate more realis-
tic file workload: file server workload, multi stream read, single read and mail server
workload.

Since SmartCon incorporates CPU utilization and IO queue length, IO size and IO
latency in the decision process, it is important to examine the performance under var-

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:15

ious system loads and IO sizes. We perform each set of experiments under three differ-
ent system loads.
• BMonly: we use the system without any ongoing process other than benchmark

application. In most case, most of the context switches will be self context switch (type
iii).
• CPUIntensive: we examine the performance of SmartCon enabled IO subsystem

when the CPU is saturated. We run ten number crunching applications to saturate
the CPU. This is to examine if the SmartCon properly incorporates the current CPU
utilization to make context switch decision.
• IOIntensive: we examine the performance of SmartCon enabled IO subsystem when

the respective storage device is saturated. SmartCon examines IO queue length and
applies busy-waits only when the respective IO device is not busy. For this purpose,we
run four IO intensive applications alongside the benchmark.

The initialization module of SmartCon probes the device and CPU and determines
the threshold value for CPU utilization and IO size. IO size threshold is set to 64
KB. CPU utilization threshold value is set to 85% for RevoDrive SSD on Core-i5 and
53% for Intel SSD on Core2Duo, respectively. We measure IO performance, number of
context switches, and CPU utilization for each case. Here, IO performance is defined
as the read bandwidth in MB/sec. Therefore, the Bandwidth Gain shown in the figures
corresponds to the additional read bandwidth provided by using SmartCon.

7.2. Ramdisk

-10

0

10

30

50

70

90

4 8 16 32 64

B
a
n

d
w

id
th

 G
a

in
 (

%
)

Rec Size (KB)

BM only

CPU Intensive

IO Intensive

(a) IOZONE, Sequential Read, 256 MByte file,

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

4 8 16 32 64

N
o

rm
a
liz

e
d

 P
e
rf

o
rm

a
n
c
e

Rec Size (KB)

Without CS

With CS

(b) Read Performance With/without Context
Switch (NP 1.0 in Y axis denotes I/O perf. of
Mainstream)

Fig. 9. Ramdisk

We first examine the performance of RAMDISK device. This is to project the per-
formance gain which SmartCon can bring when the future non-volatile RAM with
DRAM-like latency, e.g. STT-MRAM [Li et al. 2008] is deployed as a storage device.
We ran IOZONE benchmark (sequential read, 256 MByte file) and examined the se-
quential read performance under different IO sizes (from 4 KByte to 256 KByte). The
experiments were performed under three different systems loads: BM only, CPU in-
tensive and IO intensive. We turn off filesystem prefetching. Fig. 9 illustrates the read
performance improvement achieved by SmartCon compared to context switch based
IO subsystem.

In Fig. 9(a), when there is no other process, SmartCon yields approximately 20% im-
provement for all IO sizes. This confirms that significant fraction of IO latency is due

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:16 J. Gim et al.

 0

 10

 20

 30

 40

 50

4 8 16 32 64 128 256

N
u

m
. o

f
C

o
n

te
x

t
S

w
it

c
h

e
s

Rec Size (KB)

Invol. (M.)

Vol. (M.)

Invol. (S.)

Vol. (S.)

(a) None

 0

 100

 200

 300

 400

 500

 600

4 8 16 32 64 128 256

N
u

m
. o

f
C

o
n

te
x

t
S

w
it

c
h

e
s

Rec Size (KB)

Invol. (M.)

Vol. (M.)

Invol. (S.)

Vol. (S.)

(b) CPU intensive

 0

 10

 20

 30

 40

 50

4 8 16 32 64 128 256

N
u

m
. o

f
C

o
n

te
x

t
S

w
it

c
h

e
s

Rec Size (KB)

Invol. (M.)

Vol. (M.)

Invol. (S.)

Vol. (S.)

(c) IO Intensive

Fig. 10. Ramdisk: Number of Context Switches (M.: Mainstream, S.: SmartCon)

to the overhead caused by context switch. The benefit of SmartCon becomes more sig-
nificant (> 30% performance gain), when IO subsystem is highly loaded with other IO
bound processes (IOIntensive). This is because when a request from a process is serviced
by busy-wait based IOs, the process does not have to compete with other processes to
acquire CPU when the IO completes.

We can find the reason for performance advantage of SmartCon by examining the
number of context switches. Fig. 10 shows the number of voluntary and involuntary
context switches. The number of voluntary context switches remains almost the same
in Mainstream IO and SmartCon IO. However, the number of involuntary context
switches differs a lot. In CPU intensive environment, the most context switches in
mainstream IO subsystem are involuntary because of the presence of higher prior-
ity processes which the RAMDISK driver will switch in when I/O is complete. In the
SmartCon IO subsystem, RAMDISK driver holds CPU till the timer interrupt occurs.
The number of involuntary context switches in SmartCon is approximately 1/6th of
that for the mainstream IO.

-10

0

10

20

30

FS MSR FSR Varmail

B
a
n

d
w

id
th

 G
a

in
 (

%
)

File
server

Multi
stream
read

Filemicro
seqread

4KB

(a) Filebench, 1000 files, 5 IO threads

-10

-5

0

5

10

15

20

5 6 7 8 9 10

B
a
n

d
w

id
th

 G
a

in
 (

%
)

Bias

(b) Postmark, file creation, file size = from 4 KB to
64 KB, bias is (number of reads)/(number of writes)

Fig. 11. Ramdisk: Read Performance on Filebench and Postmark

Fig. 11(a) illustrates the performance gain in SmartCon in four workloads. There is
practically no performance gain in the first three workloads: File server, Multi stream
read, and File Micro read. Mail server workload yields 8% performance gain in Smart-
Con. File Server, Multistream read and single stream read generate large size se-
quential IO (1 MByte) and therefore the advantage of busy wait based IO becomes
marginal. On the other hand, mail server workload generates 16 KByte random IO

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:17

which results in significant performance improvement in SmartCon. Fig. 11(b) illus-
trates performance results of Postmark. Here, the SmartCon advantage varies with
bias and is as large as 7 %.

7.3. High-End SSD

-10

0

10

30

50

70

90

4 8 16 32 64

B
a
n
d

w
id

th
 G

a
in

 (
%

)

Rec Size (KB)

BM only

CPU Intensive

IO Intensive

(a) IOZone, seq. read, 256MB file

0

0.25

0.50

0.75

1.00

1.25

1.50

4 8 16 32 64

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Rec Size (KB)

Busy-wait based IO

SmartCon

(b) Read performance with and without context
switch (NP 1.0 in Y axis denotes I/O perf. of Main-
stream)

Fig. 12. OCZ RevoDrive3, 480GByte

We examine the performance of OCZ RevoDrive SSD with IO size threshold and CPU
threshold set to 64 KByte and 75%, respectively. Fig. 12(a) illustrates the performance
for IOZONE benchmark. For 4 KByte IO size, SmartCon yields 48%, 1%, and 16%
bandwidth improvement for BMonly, CPUIntensive, and IOIntensive, respectively. The
improvement becomes less significant for larger IO. Since SmartCon and Mainstream
IO subsystem show identical performance when the IO size is greater than IO size
threshold (64KB).

In the IO intensive environment, the CPU utilization is found to be 62% - 68% for all
record sizes. The SmartCon module decides to stall CPU only when IO size is less than
or equal to 64 KB. Fig. 12(a) shows that SmartCon achieves up to 16% improvement
in IO bandwidth.

For BMonly environment, the CPU utilization stays at 75% and SmartCon stalls
CPU. When background process performs CPU intensive task, SmartCon does context
switch on every IO operation. Thanks to CPU utilization aware context switch mecha-
nism, SmartCon monopolizes the CPU core only when there are sufficient CPU cycles
left. Fig. 12(b) illustrates that SmartCon exhibits robust performance and yields as
good a performance as mainstream IO when the CPU is saturated.

Fig. 13 shows the performance result of Filebench and Postmark with RevoDrive. In
Fig. 13(a), SmartCon shows 6% bandwidth improvement on Varmail, while it does not
bring any improve in the other three workloads due to the same reason as in Fig. 11. In
the Postmark, the performance gain of SmartCon is less significant in RevoDrive (less
than 4%) than in Ramdisk (5% - 7%) (Fig. 13(b)). We measure the read performance of
SmartCon under Bonnie++. Fig. 14 shows the results. SmartCon achieves 45% to 65%
read performance improvement for Revodrive and Intel X25M G1.

We examine how SmartCon affects the CPU performance of the other processes. One
of the important design objectives of SmartCon is to minimize the side effect of busy-
wait driven IO to the other processes. To this end, we ran CPU intensive benchmark
Dhrystone [Weicker 1984] with and without SmartCon, respectively and measured the

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:18 J. Gim et al.

-10

0

10

20

30

FS WS Proxy Varmail

B
a
n
d

w
id

th
 G

a
in

 (
%

)

File
server

Web
server

4KB

(a) Filebench: 1000 files, 5 IO threads

-10

-5

0

5

10

15

20

5 6 7 8 9 10

B
a
n
d

w
id

th
 G

a
in

 (
%

)

Bias

(b) Postmark: file creation, file size = 4KB to 64KB,
bias is (number of reads)/(number of writes)

Fig. 13. RevoDrive: Read Performance on Filebench and Postmark

-10

0

10

30

50

70

90

4 8 16 32 64

B
a
n

d
w

id
th

 G
a

in
 (

%
)

Record Size (KB)

Intel x25m

Revodrive

Fig. 14. Bonnie++: Read Performance for RevoDrive and Intel X25M SSD

Table VI. Drystone Performance with SmartCon
and Mainstream IO

Time Mainstream SmartCon Gain

real 83m 48s 82m 39s 1.4 %
user 36m 24s 37m 44s -3.5 %
sys 35m 44s 36m 54s -3.1 %

IOwait 11m 40s 8m 1s 32 %

benchmark performance. To generate IO requests, we ran IOZone concurrently. The
total execution time of Dhrystone decreases by 1.4% in SmartCon (Table VI). Thus,
SmartCon does not negatively affect the performance of the other processes in the
system. SmartCon consumes more CPU cycles: user and system part of CPU utilization
increase by 3% in SmartCon. However, it significantly reduces the IO waiting time
(32%). As a result, overall CPU throughput remains almost unaffected.

7.4. Low-End SSD
We ran the same set of experiments with low-end SSD (Intel X25M G1) and two core
CPU (Intel Core2Duo). In Intel Core2Duo, there are only two CPU cores and the clock
rate is slower than for Core-i5. Therefore, we need to reserve a relatively larger fraction
of CPU cycles to execute SmartCon. Device Monitor and System monitor set IO size
threshold and CPU threshold value as 64 KByte and 55%, respectively.

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:19

-10

-5

0

5

10

15

20

4 8 16 32 64

B
a

n
d

w
id

th
 G

a
in

 (
%

)

Rec Size (KB)

BM only

CPU Intensive

IO Intensive

(a) IOZONE, Sequential Read, 256 MByte

0

0.25

0.50

0.75

1.00

1.25

1.50

4 8 16 32 64

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

Rec Size (KB)

Busy-wait based IO

SmartCon

(b) Read Performance with and without con-
text switch (NP 1.0 in Y axis denotes I/O perf.
of Mainstream)

Fig. 15. Intel X25M G1

Fig 15(a) illustrates normalized performance of SSD between mainstream and
SmartCon IO. Clearly, the advantage of using SmartCon is not as significant in rela-
tively slow storage device as in highend SSD’s and Ramdisk. For BMonly environment,
CPU utilization is lower than CPU threshold and therefore SmartCon stalls CPU.
SmartCon yields up to 9% performance gain in IO bandwidth. In CPUIntensive and
IOIntensive , CPU utilization is higher than CPU threshold value. SmartCon switches
context in every IO and yields the identical performance as mainstream IO. We exam-
ine the effectiveness of conditional blocking mechanism of SmartCon. Fig 15(b) illus-
trates the normalized performance of SmartCon against the one where CPU always
stalls waiting for an IO completion. The performance becomes only 25% of that of
SmartCon.

-10

0

10

20

30

FS MSR FSR Varmail

B
a

n
d

w
id

th
 G

a
in

 (
%

)

File
server

Multi
stream
read

Filemicro
seqread

4KB

(a) Filebench, 10000 files, 10 IO threads, 4 KB
IO

-10

-5

0

5

10

15

20

5 6 7 8 9 10

B
a
n
d
w

id
th

 G
a
in

 (
%

)

Bias

(b) Postmark, file creation, file size = from
4 KB to 64 KB, bias is (number of
reads)/(number of writes), (Write Perfor-
mance: 9%)

Fig. 16. Intel X25M G1: Read Performance on Filebench and Postmark

Fig. 16(a) illustrates the performance improvement obtained by SmartCon for file
server, multi-stream read, single stream read and mail server workloads. For the first
three workloads, there is virtually no performance gain. This is because of the large IO
size of these workloads. On the other hand, SmartCon yields 5.5% performance gain in
mail server workload. This is because mail server generates mostly small size IO (16

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:20 J. Gim et al.

KByte) which SmartCon can exploit busy-waiting. As shown in Fig. 16(b), SmartCon
yields 11% and 9% improvement in Postmark for read and write, respectively.

7.5. SmartCon for large IO
It is important to make sure that SmartCon performs as well as context switch based
IO subsystem does for large IO. Fig. 17 shows the performance of large IO with IO-
ZONE, and record sizes of 128KB, 256 KB, and 512 KB for two storage device (Revo-
Drive and Intel X25M G1). SmartCon performs on par with mainstream IO subsystem.

90

95

100

105

110

128 256 512

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 (
%

)

Rec Size (KB)

BM only

CPU Intensive

IO Intensive

(a) OCZ RevoDrive3

90

95

100

105

110

128 256 512N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce
 (

%
)

Rec Size (KB)

BM only

CPU Intensive

IO Intensive

(b) Intel X25M G1

Fig. 17. SmartCon Overhead from 128KB to 512KB IO size (NP 100% in Y axis denotes I/O perf. of Main-
stream)

7.6. Performance Projections For Various NVRAM Technologies
In this section, we provide some projections of SmartCon performance for four different
NVRAM technologies: DDR (50 ns), PCRAM (70 ns), FRAM (68 nsec) and MRAM (35
ns) using our simple performance projection model introduced in section 6 and using
the calibration parameters listed in Table III.

Fig. 18 illustrates the effective CPI values, and performance ratios for DRAM,
FRAM, PRAM and MRAM devices, respectively. SmartCon is expected to bring 80%
performance gain against mainstream context switch based IO.

DRAM MRAM FRAM
 0

 5

 10

 15

 20

 25

 30

B
a

n
d

w
id

th
 G

a
in

 (
%

)

PRAM

(a) Bandwidth Gain for Read

 0

 10

 20

 30

 40

 50

C
P

I
to

t

SmartCon

Mainstream

DRAM MRAM FRAM PRAM

(b) CPI

Fig. 18. Performance Gain of SmartCon under Different Devices (CPItot: CPI in Eq. 1)

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:21

7.7. Impact of SmartCon on Cache Pollution
The reduction of context switches by SmartCon could reduce cache pollution and hence
lead to better performance. We examine the cache miss behaviors with and without
SmartCon, respectively. As discussed earlier, only the indirect overhead is significant.
To quantify this indirect overhead of context switches, we ran IOZone on RAMDISK
along with four other processes, each of which accesses files on the hard disk drive. We
measured the Instruction TLB misses, Data TLB misses, L1 and L2 cache miss rates
with varying number of IO sizes. The file size used in this experiment was 256MB. The
cache performance is assessed from the hardware performance counters.

Fig. 19 shows the miss ratio of different caches as a function of IO size: Instruction
TLB, Data TLB, L1 Data Cache, L1 Instruction Cache, L2 Data Cache and L2 Instruc-
tion Cache. Fig. 19(a) shows that the Instruction TLB miss rate is too small (< 1%) to
affect the performance. For larger IO sizes of 16 KB, 128 KB and 512 KB, the Inst TLB
miss rate becomes lower because of fewer instructions per byte of data transferred.

The Data TLB miss rate remains quite high for both SmartCon IO and mainstream
IO, as shown in Fig. 19(b); however, the SmartCon value is lower in all IO sizes. On
the average, Data TLB miss rate decreases by 7% by using SmartCon. The reason
for Data TLB miss rate being much larger than Instruction TLB miss rate is that
IO intensive workloads generate significant data traffic but have a small instruction
footprint. Overall, for 4 KB IO size, SmartCon can reduce the Instruction TLB misses
by 15% and data TLB misses by 16% or more.

Fig. 19(c) and 19(d) show the L1 Instruction and Data Cache miss rates, respec-
tively. We observe that the miss rate differs by a factor of 20 between Instruction and
Data TLB. The miss rate of L1 Data Instruction caches are relatively similar. For 4
KB record size, L1 instruction cache miss rate decreases from 13.2% to 8.1% by using
SmartCon. For 16 KB record size, SmartCon provides better improvement than Main-
stream IO. For 128KB and 512KB, the instruction L1 miss rate becomes very small for
essentially the same reasons as given for instruction TLB miss rate. For 4 KB record
size, SmartCon reduces the L1 Data Cache miss rate from 13% to 4.3%. For 16 KB and
128 KB IO size, the improvement provided by SmartCon is significantly smaller.

Because of the large size of L2 cache, the L2 miss rate is only about 1/200th of L1
miss rate. Figs. 19(e) and 19(f) show L2 cache miss rate caused by instruction fetches
and data loads, respectively. Unlike instruction TLB and L1, where the miss rate
decreases with IO size, L2 instruction miss rate generally increases with IO size. This
behavior has to do with effectiveness of L2 caching. A large IO size makes it more
difficult to contain the working set in L2 cache and the miss rate increases. This is
particularly obvious for 512KB IO size since the L2 size is only 4MB. As for the impact
of SmartCon, the L2 instruction miss rate is somewhat higher but the data miss rate
is significantly lower. In particular, SmartCon improves L2 cache miss rate by upto
77%.

7.8. Impact of PAUSE instruction on SmartCon
In this section, we introduce PAUSE instruction [Orenstien and Ronen 2004] and apply
it to SmartCon. The PAUSE instruction gives a hint to physical processor that this loop
is just a spin-wait loop so that the physical processor which provides hyper-threading
can switch to another logical processor in order to increase system throughput. The
benefit of PAUSE instruction with hyper-threading is two-fold: (i) switching other logical
processor and (ii) reducing power consumption by using ”nop”.

We tested the PAUSE enabled SmartCon with Intel X25M by inserting PAUSE instruc-
tion on spin-wait loop for checking the IO completion. We ran IOzone with 4KB and
8KB IOsize. Fig. 20 illustrates the time series of CPU utilization under SmartCon

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:22 J. Gim et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4KB 16KB 128KB 512KB

M
is

s
 R

a
te

 (
%

)

SmartCon

Mainstream

(a) Instruction TLB misses

 0

 5

 10

 15

 20

4KB 16KB 128KB 512KB

M
is

s
R

a
te

 (
%

)

SmartCon

Mainstream

(b) Data TLB Misses

 0

 3

 6

 9

 12

 15

4KB 16KB 128KB 512KB

M
is

s
R

a
te

 (
%

)

SmartCon

Mainstream

(c) Instruction L1 cache misses

 0

 3

 6

 9

 12

 15

4KB 16KB 128KB 512KB

M
is

s
R

a
te

 (
%

)

SmartCon

Mainstream

(d) Data L1 cache misses

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

4KB 16KB 128KB 512KB

M
is

s
R

a
te

 (
%

)

SmartCon

Mainstream

(e) L2 cache misses (instruction)

 0

 0.02

 0.04

 0.06

 0.08

4KB 16KB 128KB 512KB

M
is

s
R

a
te

 (
%

)

SmartCon

Mainstream

(f) L2 cache misses (data)

Fig. 19. L1, L2 and TLB Behavior in Mainstream and SmartCon enabled OS

0

10

20

30

40

50

60

1 5 10 15 20 25 30 35

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Time (sec)

Without PAUSE

With PAUSE

Fig. 20. With/without PAUSE Instruction on SmartCon

based IO. The white bar and the comb-pattern bar denotes the result without and with
PAUSE instruction, respectively. The CPU utilization and the IO performance of Smart-
Con with and without PAUSE instructions are similar. With PAUSE instruction, the CPU
utilization varies more widely than without PAUSE instruction.

8. CONCLUSIONS AND FUTURE WORK
Recent advancement in storage technologies have produced a new set of storage de-
vices that are orders of magnitude faster than mainstream hard disk. They include the
already mature NAND flash based SSD’s and forthcoming byte-addressable NVRAM’s,
e.g. STT-MRAM and PCRAM. Also, recent advancements in multicore CPUs makes

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:23

CPU cycles generally plentiful. For many workloads, the performance of the storage
subsystem is one of the key factors that governs the overall system performance.

In this work, we argue that context switch based IO subsystem leaves much to be
desired in fully exploiting the state of art storage devices and multicore CPUs. We
propose a new mechanism called SmartCon (Smart Context Switch) that conditions
context switch on the performance characteristics of the IO device, the system load,
and the IO request size.

We prototyped SMARTCON in Linux Operating System (2.6) and performed extensive
experiments to verify the performance benefits under a wide variety of system loads.
SmartCon was tested with three representative storage devices: RAMDISK, high-end
SSD, and low-end SSD. SmartCon yields upto 45% improvement in IO performance
and decreases involuntary context switches by upto 84%. We verify that SmartCon
does not negatively affect the overall system throughput. We also introduce a sim-
ple analytic model to project performance advantage of SmartCon for future NVRAM
technologies.

In the future, we plan to address the energy consumption of SmartCon because the
lack of context switch stalls the CPU and an intelligent mechanism to use available
sleep stacks (e.g. C6) becomes essential to reduce energy waste. We will also exam-
ine the impact of device cache on SmartCon performance and devise mechanisms to
include it in the decision algorithm, if necessary.

REFERENCES
Anant Agarwal, John Hennessy, and Mark Horowitz. 1988. Cache performance of operating system and

multiprogramming workloads. ACM Trans. Comput. Syst. 6, 4 (1988), 393–431.
M.R. Ahmadi and D. Maleki. 2010. Performance evaluation of server virtualization in data center applica-

tions. In Proc. of International Symposium on Telecommunications (IST). IEEE, Tehran, Iran.
Ameen Akel, Adrian M. Caufield, Todor l. Mollov, Rajesh K. Gupta, and Steven Swanson. 2011. Onyx: A

Prototype Phase Change Memory Storage Array. In Proc. of USENX HotStorage. Portland, OR.
Suparna Bhattacharya, John Tran, Mike Sullivan, and Chris Mason. 2004. Linux AIO Performance and

Robustness for Enterprise Workloads. In Proc. of Linux Symposium. Ottawa, Canada.
G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, and R.S. Shenoy. 2008. Overview of can-

didate device technologies for storage-class memory. IBM Journal of Research and Development 52, 4-5
(2008), 449–464.

Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Rajesh K. Gupta, and Steven Swan-
son. 2010. Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-
volatile Memories. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’43). IEEE Computer Society, Washington, DC, USA, 385–395.
DOI:http://dx.doi.org/10.1109/MICRO.2010.33

Feng Chen, Michael P Mesnier, and Scott Hahn. 2014. A Protected Block Device for Persistent Mem-
ory. In Proceedings of The 30th International Conference on Massive Storage Systems and Technology
(MSST’14).

Joel Coburn, Adrian M. Caufield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. 2011. NV-Heaps: Making Persistent Objects Fast and Safe with Next-Generation,
Non-volatile Memories. In Proc. of the international conference on Architectural support for program-
ming languages and operating systems (ASPLOS). Newport Beach, CA.

J. Corbet, A. Rubini, and G. Kroah-Hartman. Feb. 2005. Linux device drivers. O’Reilly Media, Inc.
Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell. 2007. Context switch overheads for Linux on

ARM platforms. In Proc. of workshop on Experimental computer science (ExpCS). San Diego, CA, USA.
Samsung Electronics. June 2005. OneNAND Specification ver.1.2.
Khaled Elmeleegy, Anupam Chanda, and Alan L. Cox. 2004. Lazy Asynchronous I/O for Event-Driven

Servers. In Proc. of USENIX Annual Technical Conference (ATC). Boston, MA.
R. F. Freitas and W. W. Wilcke. 2008. Storage Class Memory: The next storage system technology. IBM

Journal of Research and Development 52, 4/5 (2008), 439–447.
FusionIO. 2010. ioDrive Product Family User Guide - Linux for Driver Release 2.1.0. (Aug. 2010).

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:24 J. Gim et al.

HenkPoley. Feb, 2014. A Look Back at Single-Threaded CPU Performance. http://preshing.com/20120208/a-
look-back-at-single-threaded-cpu-performance/. (Feb, 2014).

M. Hosomi, H. Yamagishi, and et. al. 2005. A novel nonvolatile memory with spin torque transfer mag-
netization switching: spin-ram. In Proc. of IEEE Intl. Electron Devices Meeting. Washington, DC, UA,
459–462.

A Huffman. 2012. Nvm express, revision 1.0 c. Intel Corporation (2012).
Intel. 2011. Light Peak Technology. Web site: http://en.wikipedia.org/wiki/Light Peak (Jan. 2011).
E. Ipek, J. Condit, B. Lee, E.B. Nightingale, D. Burger, C. Frost, and D. Coetzee. 2009. Better I/O through

byte-addressable, persistent memory. In Proc. of the ACM SIGOPS symposium on Operating systems
principles (SOSP). Big Sky, MT, USA.

Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. 2013. I/O Stack Optimization
for Smartphones. In Presented as part of the 2013 USENIX Annual Technical Conference (USENIX
ATC 13). USENIX, San Jose, CA, 309–320. https://www.usenix.org/conference/atc13/technical-sessions/
presentation/jeong

Ryan Johnson, Manos Athanassoulis, Radu Stoica, and Anastasia Ailamaki. 2009. A new look at the roles of
spinning and blocking. In Proc. of the International Workshop on Data Management on New Hardware
(DaMoN). ACM, New York, NY, USA, 21–26.

M. Tim Jones. 2006. Linux initial RAM disk (initrd) overview. Web site: https://www.ibm.com/
developerworks/library/l-initrd (July 2006).

J. Jung, J. Choi, Y. Won, and S. Kang. 2009. Shadow Block: Imposing Block Device Abstraction on Storage
Class Memory. In Proc. of International Workshop on Software Support for Portable Storage (IWSSPS).
Grenoble, France.

J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon. 2010. FRASH: Exploiting Storage Class Memory in Hybrid
File System for Hierarchical Storage. ACM Trans. on Storage 6, 1 (2010), 1–25.

K. Kant. 2008. Exploiting NVRAM for Building Multi-Level Memory Systems. In Proc. of Intl. Workshop on
OS Technologies for Large Scale NVRAM (NVRAMOS): Presentation. Jeju, Korea.

K. Kant and Y. Won. 1999. Server capacity planning for Web traffic workload. Knowledge and Data Engi-
neering, IEEE Transactions on 11, 5 (1999), 731 –747.

Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. 1991. Empirical studies of competitve spinning
for a shared-memory multiprocessor. In Proc. of the ACM symposium on Operating systems principles
(SOSP). ACM, New York, NY, USA, 41–55.

Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob: Crowdsourced data race detection. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 406–422.

J. Katcher. 1997. Postmark: A new file system benchmark. (1997).
M. Kobayashi. 1986. An empirical study of task switching locality in MVS. IEEE Trans. on Computers 100,

35 (Aug. 1986), 720–731.
Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and Jeff Jackson. 2014. Yat: A

Validation Framework for Persistent Memory Software. In 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14). USENIX Association, Philadelphia, PA, 433–438. https://www.usenix.org/
conference/atc14/technical-sessions/presentation/lantz

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as
a scalable dram alternative. In Proc. of the annual international symposium on computer architecture
(ISCA). ACM, New York, NY, USA.

Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the cost of context switch. In Proc. of workshop
on Experimental computer science (ExpCS ’07). San Diego, CA, USA.

Jing Li, Charles Augustine, Sayeef Salahuddin, and Kaushik Roy. 2008. Modeling of failure probability and
statistical design of spin-torque transfer magnetic random access memory (STT-MRAM) array for yield
enhancement. In Proc. of Design Automation Conference (DAC). Anaheim, CA, UA, 278–283.

Fang Liu, Fei Guo, Yan Solihin, Seongbeom Kim, and Abdulaziz Eker. Characterizing and modeling the
behavior of context switch misses. In Proc. of Intl. conf. on Parallel architectures and compilation tech-
niques (PACT). 91–101.

R. McDougall and J. Mauro. 2005. FileBench. (2005).
L. McVoy and C. Staelin. 1996. LMBENCH: Portable tools for performance analysis. In Proc. of the USENIX

Annual Technical Conference (ATC). San Diego, CA, USA, 279–294.
Microsoft corp. msdn. 2010. Ramdisk. Web site: msdn.microsoft.com/en-us/library/ff544551(VS.85).aspx

(Aug. 2010).
Kevin OBrien. May, 2013. OCZ RevoDrive 3 X2 480GB Review. (May, 2013).

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

SmartCon: Smart Context Switching for Fast Storage IO Devices 39:25

Doron Orenstien and Ronny Ronen. 2004. Low-power processor hint, such as from a PAUSE instruction.
(Feb. 3 2004). US Patent 6,687,838.

J.K. Ousterhout. 1990. Why are not operating systems getting faster as fast as hardware. In Proc. of the
Summer 1990 USENIX Conf. Anaheim, CA, 247–256.

S. Park and K. Shen. 2009. A performance evaluation of scientific i/o workloads on flash-based ssds. In Proc.
of Workshop on Interfaces and Architectures for Scientific Data Storage (IASDS). New Orleans, LA.

Moinuddin K. Qureshi, Michele M. Franceschini, Luis A. Lastras-Montaño, and John P. Karidis. 2010. Mor-
phable memory system: a robust architecture for exploiting multi-level phase change memories. In Proc.
of the annual international symposium on computer architecture (ISCA). ACM, New York, NY, USA.

Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Revers. 2009. Scalable High Performance
Main Memory System Using Phase-Change Memory Technolohy. In Proc. of ACM/IEEE International
Symposium on Computer Architecture (ISCA). Austin, Texas, US, 24–33.

K. Salah and A. Qahtan. 2009. Implementation and experimental performance evaluation of a hybrid
interrupt-handling scheme. Computer Communications 32, 1 (2009), 179 – 188.

Samsung Electronics. June 2007. 1Gb C-die DDR3 SDRAM Specification. (June 2007).
Patrick Schmid and Achim Roos. Sep, 2008. Intel X25-M Solid State Drive Reviewed.

http://www.tomshardware.com/reviews/Intel-x25-m-SSD,2012.html. (Sep, 2008).
Johan Starner and Lars Asplund. Measuring the cache interference cost in preemptive real-time systems.

In Proc. of ACM SIGPLAN/SIGBED conf. on Languages, compilers, and tools for embedded systems
(LCTES). 146–154.

D. Tam, R. Azimi, L. Soares, and M. Stumm. 2007. Managing shared L2 caches on multicore systems in soft-
ware. In Proc. of the Workshop on the Interaction between Operating Systems and Computer Architecture
(WIOSCA). San Diego, CA.

The Open Group Base Specifications Issues 6 IEEE Std 1003.1. 2003.
http://www.opengroup.org/onlinepubs/007904975. (2003).

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell. 2011. Consis-
tent and Durable Data Structures for non-Volatile Byte-Addressable Memory. In Proc. of the Usenix
Conference on File and Storage Technologies (FAST). San Jose, CA.

G. Venkatasubramanian, R.J. Figueiredo, R. Illikkal, and D. Newell. Sao Paulo, Brazil, Oct. 2009. TMT-A
TLB Tag Management Framework for Virtualized Platforms. In Proc. of 21st Intl Symp on Computer
Arch and High Perf Computing. 153–160.

Haris Volos, Nadres Jann Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight Persistent Memory. In
Proc. of the international conference on Architectural support for programming languages and operating
systems (ASPLOS). Newport Beach, CA.

R.P. Weicker. 1984. Dhrystone: a synthetic systems programming benchmark. Commun. ACM 27, 10 (1984),
1013–1030.

A. Wiggins, H. Tuch, V. Uhlig, and G. Heiser. 2003. Implementation of fast address-space switching and TLB
sharing on the StrongARM processor. In Proc. of the Eighth Asia-Pacific Computer Systems Architecture
Conference (ACSAC). Aizu-Wakamatsu, Japan.

Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie. 2009. Hybrid cache architec-
ture with disparate memory technologies. In Proc. of the annual international symposium on computer
architecture (ISCA). ACM, New York, NY, USA.

S. Yamada and S. Kusakabe. 2008. Effect of context aware scheduler on TLB. In Proc. of IEEE Intl. symp.
on Parallel and Distributed Processing. Miami, Florida, USA, 1–8.

J. Yan and W. Zhang. 2008. WCET analysis for multi-core processors with shared L2 instruction caches.
In Proc. of IEEE Real-Time and Embedded Technology and Applications Symp (RTAS). St. Louis, MO,
USA, 80–89.

Jisoo Yang, Dave B Minturn, and Frank Hady. 2012. When poll is better than interrupt.. In Proceedings of
the 10th USENIX Conference on FAST (FAST’12). 3.

Received May 2013; revised May 2013; accepted May 2013

ACM Transactions on Storage, Vol. 9, No. 4, Article 39, Publication date: March 2013.

