
NVWAL: Exploiting NVRAM in Write-Ahead Logging

Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam,

Ulsan National Institute of Science and Technology (UNIST)

{okie90,jwkim,wbaek,bsnam}@unist.ac.kr

Youjip Won

Hanyang University

yjwon@hanyang.ac.kr

Abstract

Emerging byte-addressable non-volatile memory is consid-

ered an alternative storage device for database logs that

require persistency and high performance. In this work,

we develop NVWAL (NVRAM Write-Ahead Logging) for

SQLite. The proposed NVWAL is designed to exploit byte-

addressable NVRAM to maintain the write-ahead log and

to guarantee the failure atomicity and the durability of

a database transaction. The contribution of NVWAL con-

sists of three elements: (i) byte-granularity differential log-

ging that effectively eliminates the excessive I/O overhead

of filesystem-based logging or journaling, (ii) transaction-

aware lazy synchronization that reduces cache synchroniza-

tion overhead by two-thirds, and (iii) user-level heap man-

agement of the NVRAM persistent WAL structure, which

reduces the overhead of managing persistent objects.

We implemented NVWAL in SQLite and measured the

performance on a Nexus 5 smartphone and an NVRAM

emulation board - Tuna. Our performance study shows the

following: (i) the overhead of enforcing strict ordering of

NVRAM writes can be reduced via NVRAM-aware trans-

action management. (ii) From the application performance

point of view, the overhead of guaranteeing failure atomic-

ity is negligible; the cache line flush overhead accounts for

only 0.8∼4.6% of transaction execution time. Therefore, ap-

plication performance is much less sensitive to the NVRAM

performance than we expected. Decreasing the NVRAM la-

tency by one-fifth (from 1942 nsec to 437 nsec), SQLite

achieves a mere 4% performance gain (from 2517 ins/sec

to 2621 ins/sec). (iii) Overall, when the write latency of

NVRAM is 2 usec, NVWAL increases SQLite performance

by at least 10x compared to that of WAL on flash memory

(from 541 ins/sec to 5812 ins/sec).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax

+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16, April 2–6, 2016, Atlanta, Georgia, USA

Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2872362.2872392

Categories and Subject Descriptors H.2.7 [Database

Management]:Logging and recovery

Keywords Write-ahead-logging; Non-volatile memory

1. Introduction

In the era of mobile computing, SQLite [3] is arguably the

most widely deployed relational database management sys-

tem because Android devices extensively use it to persis-

tently manage application data for a wide range of apps such

as contact managers, Twitter, and even web browsers. Due

to its serverlessness, compactness, and the ability to form an

integral part of a program, SQLite has become a core com-

ponent of the Android software stack.

Despite its popularity, SQLite is far from being satisfac-

tory in terms of efficiently exploiting the underlying hard-

ware resources, mainly because the EXT4 filesystem jour-

nals the database journaling operation [17, 21, 23, 33, 38].

Beginning with SQLite 3.7, write-ahead logging (WAL) has

become available as an alternative option to rollback jour-

nal modes. The WAL recovery scheme is designed in such

a way that any update operation to a database page has to

first be recorded in a permanent log file. WAL significantly

improves the performance of SQLite because WAL needs

fewer fsync() calls as it modifies a single log file instead of

two, i.e., a database file and a rollback journal file [23]. How-

ever logging a single database transaction in SQLite WAL

mode still entails at least 16 KBytes I/O traffic to underlying

storage mainly due to metadata journaling overhead in the

EXT4 file system [23].

The recent advances of byte-addressable NVRAM (Non-

Volatile RAM) open up a new opportunity to reduce the

high latency of NAND flash memory and the I/O overhead

of block granularity journaling [10, 14, 35, 37, 41, 43]. As

the log file is often much smaller than the database file

and is accessed very frequently, high performance NVRAM

is considered to be a promising alternative storage device

for write-ahead logs. First, NVRAM can be used as a disk

replacement; each page in a log file can be flushed to the

NVRAM file system with low latency using a legacy block

device I/O interface [15, 18, 22]. Alternatively, in order to

take advantage of the fine granularity of byte-addressable

385

NVRAM, each log record in a transaction can be stored in

NVRAM as a persistent object [15, 36].

In this work, we take the latter approach and implement

write-ahead logging for NVRAM (NVWAL) in SQLite. Our

implementation of NVWAL allows reordering of memory

write operations and minimizes the overhead of the cache

line flush via byte-granularity differential logging. In addi-

tion, NVWAL reduces the overhead required to manage per-

sistent objects via user-level heap management, while guar-

anteeing the failure atomicity. NVWAL is not a completely

novel logging data structure, but it orchestrates SQLite, the

OS persistent heap manager, and NVRAM layers to effec-

tively leverage high performance NVRAM.

Over the past decades, processor design for volatile mem-

ory has evolved. Modern processors often do not preserve

the ordering of memory write operations unless a memory

barrier instruction is explicitly invoked. However, NVRAM

must constrain the ordering of write operations to ensure cor-

rect recovery from system failures [37]. In order to avoid

limiting NVRAM write concurrency and improve write

throughput, several memory persistency models are being

considered for emerging NVRAM technologies [37]. As-

suming one of these NVRAM persistency models, NVRAM

heap managers such as NV-Heaps [9] and Heapo [16], and

NVRAM file systems such as SCMFS [46], PMFS [11], and

BPFS [10] have been proposed. Using these NVRAM file

systems or NVRAM heap managers, applications can deal

with the ordering issues of NVRAM writes.

Database write-ahead logging does not have to strictly

enforce the ordering of memory write operations as long as

it guarantees that a commit flag is flushed only after all the

dirty records are logged in WAL. Therefore, the proposed

NVWAL does not call cache line flush instructions per log

entry, but delays calling them in a lazy manner in order to

reduce the overhead of the cache line flush by 1/3x.

It has been reported that flushing cached data to NVRAM

can be extremely costly, especially when applications fre-

quently call cache flush operations [47]. However, our per-

formance study shows that the cost of data persistence in

SQLite is no higher than 4.6% of query execution time, and

the cost ratio even decreases when we insert a larger number

of records in a transaction. SQLite throughput is governed

both by I/O performance and by CPU performance. CPU

overhead accounts for a dominant fraction of the transaction

processing time. I/O constitutes about 30% of query process-

ing time when SQLite WAL is stored in slow storage [23].

However, when the WAL is stored in fast devices such as

NVRAM, the I/O overhead becomes much less significant

than when the WAL log is located in the slow block device

and when it is maintained through the expensive filesystem

interface.

The main contributions of this work are as follows.

• Byte-granularity differential logging

In stock SQLite WAL mode, write-ahead logging stores

an entire B-tree page in a log file. In order to reduce the

I/O overhead of SQLite logging on NVRAM, our NVWAL

writes only the dirty portion of a B-tree page, so as to take

advantage of the byte-addressability of NVRAM.

• Transaction-aware memory persistency guarantee

In order to persist memory writes and to prevent incorrect

reordering of the memory writes, cache line flush instruc-

tions and memory barriers must be called properly. We de-

velop a transaction-aware persistency guarantee via lazy

synchronization, which guarantees the atomicity and the

durability of the database. This transaction-aware memory

persistency guarantee enforces the persist order only be-

tween a set of log-write operations and the commit oper-

ation. It eliminates the unnecessary overhead of enforcing

memory write ordering constraints.

• User-level NVRAM management for WAL

The NVWAL structure is designed to minimize the over-

head of managing non-volatile memory objects. Allocat-

ing and deallocating non-volatile memory blocks using a

kernel-level NVRAM heap manager has high overhead

due to ensuring consistency in the presence of failures.

In order to avoid such overhead, we pre-allocate a large

NVRAM block and manage the user-level heap inside the

block where we store multiple WAL frames. The user-

level NVRAM management helps reduce the number of

expensive system calls to the NVRAM heap manager in-

terface.

• Effect of NVRAM latency on application performance

We observe that database transactions are less sensitive to

NVRAM latency than expected. This is because the I/O

overhead does not account for a large fraction of trans-

action execution time. In addition, we reduce the over-

head of guaranteeing the failure atomicity via NVWAL.

Consequently, we make the performance of SQLite more

insensitive to NVRAM latency. This result holds a pro-

found implication for NVRAM and CPU manufacturers

because they need to invent and improve non-volatile ma-

terial compounds and architectures to meet the expected

application performance [34].

Combining all these elements, NVWAL on NVRAM

yields transaction throughput 10x higher than that of WAL

on flash memory (541 ins/sec vs. 5812 ins/sec).

The rest of the paper is organized as follows: In sec-

tion 2, we briefly discuss the background. In section 3,

we present our design and implementation of NVWAL on

SQLite. In section 4, we discuss how the transaction-aware

memory persistency guarantee can enforce minimal ordering

of NVRAM write operations while guaranteeing durability

and failure atomicity. Section 5 provides the performance

results and analysis. In section 6, we discuss other research

efforts related to this study. We conclude the paper in sec-

tion 7.

386

2. Background: Write-Ahead Logging

In database systems, transactions make modifications to

copies of database pages in volatile buffer cache memory

and write the dirty pages to persistent storage when the

transactions commit. In SQLite write-ahead logging (WAL)

mode, the dirty pages are appended to a separate log file and

the original pages remain intact in the database file. If a sys-

tem crashes before a transaction commits or if a transaction

aborts, dirty pages written by the aborted transaction can be

simply ignored by the WAL recovery process because the

original pages are available in the database file.

In WAL mode, the checkpointing process periodically

batches the dirty pages in the log to the database file. When

all the dirty pages in the log are written and checkpointed

to the database file, the log is truncated so that it does not

grow infinitely. Checkpointing occurs whenever all database

sessions are closed or the number of log entries reaches the

predefined limit (1000 pages in SQLite).

Write-ahead logging on block device storage guarantees

the atomicity and durability of transaction commits and the

ordering of transaction commits via fsync() system calls.

In SQLite, a transaction commit mark is stored in the log

frame header of the last appended dirty page, and the dirty

pages and their checksum bytes are flushed to block device

storage all together by fsync() system call. The order of

transaction commits is guaranteed in SQLite by enforcing

the commit marks of transactions, which are appended to

the log file in the order of the commits. Because the commit

mark and the dirty pages are flushed by the same fsync()

system call in SQLite, SQLite is subject to the latent system

failure issues pointed out by [48]. However, resolution of

these problems lies beyond the scope of this paper.

3. NVWAL: Design and Implementation

For the past several decades, memory technologies have

evolved rapidly and now non-volatile memory devices such

as phase-change RAM (PCRAM) and spin-transfer torque

(STT) MRAM promise large capacity, high performance,

low power consumption, and unlimited endurance. STT-

MRAM is expected to meet the requirements of various

computing domains because its performance is expected to

be within an order of magnitude of that of DRAM [10, 11,

37].

However, as the price of NVRAM is not likely to be

as low as that of flash memory, it is hard to expect that

NVRAM will replace flash memory in the near future. On

the other hand, it can also be inferred that NVRAM will

not replace volatile DRAM without major changes in the

software stack: volatility of memory is inevitable in current

software and hardware design because system errors will

be permanent if everything is non-volatile [6]. Therefore,

we design and implement an SQLite write-ahead logging

scheme for a system that has NVRAM along with DRAM

and block device storage, as illustrated in Figure 1(b).

SQLite DBMS

Database

WAL

commit

check

point

(a) Write-Ahead Logging

Storage

Page

Cache

Database

checkpoint

(b) NVWAL

Commit

NVRAM

SQLite DBMS

DRAM
DRAM

Page

Cache
NVWAL

upated dirty bytes

old clean bytes

Figure 1: Write-Ahead Logging in NVRAM

(a) Write-Ahead Logging in SQLite

Insert

“AAA”;

(b) Byte Addressable Differential Logging

Time

WAL file on Filesystem

WAL frame

(4K Page)

Insert

“BBB”;

Insert

“CCC”;

WAL

Header

WAL frame

header

(24bytes)

AAA

AAA

BBB

AAA

BBB

CCC

Insert

“AAA”;

NVWAL on NVRAM

WAL frame

(arbitrary sized)

Insert

“BBB”;

Insert

“CCC”;

WAL

HeaderWAL frame header

including page offset

(32bytes) AAA

BBB

CCC

Time

AAA

BBB

CCC

B tree page in DRAM

Insert “CCC”;

AAA

BBB

AAA

AAA

BBB
already logged entries

CCC

page offset

Figure 2: Byte Granularity Differential Logging

3.1 Write-Ahead Logging on NVRAM

A fair number of studies have proposed to store the database

transaction logs in NVRAM [5, 8, 15, 42, 44]. When a trans-

action commits, the updated pages are either synchronized

to a database file in journaling modes, or appended to a log

file in WAL mode. Because transactions in WAL mode do

not directly update the database file but buffer the frequent

small updates in the write-ahead logs, storing write-ahead

logs in high performance NVRAM can replace expensive

block I/O traffic with lightweight memory write instructions;

such a setup can take advantage of the byte-addressability of

NVRAM as well. Figure 1(a) shows how NVRAM can be

leveraged to accelerate database transactions.

3.2 Byte Granularity Differential Logging in NVWAL

In SQLite, write-ahead logging is designed to work with

block device storage systems. It flushes an entire B-tree page

(4 KBytes in normal SQLite configuration) to a WAL log file

no matter how small a portion of the page is dirty. The size of

the B-tree is aligned with the filesystem block size to avoid

read-modify-write and torn-write problems in databases and

file systems [31]. In most cases, a single database transaction

yields changes in a small fraction of a B-tree page and leaves

most of the contents of the B-tree page intact. In NVWAL,

387

we exploit the byte-addressability of NVRAM and employ

byte-granularity differential logging (also often referred to

as delta encoding), which has been widely used in various

systems including flash memory database systems [4, 13, 26,

28].

As illustrated in Figure 2(b), the NVWAL structure con-

sists of an NVWAL header and pairs of a 32 bytes WAL

frame header and arbitrary-sized WAL frames (log entries)

created by differential logging. The NVWAL header con-

tains database file metadata as in the legacy SQLite WAL

header and a pointer to the available space for the next WAL

frame to be stored (next_frame). Each WAL frame header

consists of a commit flag, a checkpointing id number, a

database page number, an in-page offset, a frame size, and

checksum bytes for the WAL frame. For each WAL frame,

we identify which portion of the B-tree page is dirty and

truncate the preceding and trailing clean regions so that only

the dirty portions of the B-tree page are flushed to NVRAM,

as shown in Figure 2. By minimizing the memory copy, we

can avoid the unnecessary overhead of cache line flush in-

structions.

3.3 User-Level NVRAM Heap Management

There exist several well-designed proposals on how to man-

age non-volatile memory pages under a persistent names-

pace and how to map the pages to application processes [9,

35, 41, 43, 46]. BPFS [10] is a transactional file system for

NVRAM. NV-Heap [9] and Heapo [16] are heap-based per-

sistent object stores that allow programmers to implement

in-memory data structures without difficult reasoning about

thread safety, atomicity, or memory access ordering.

For NVWAL, we employed Heapo 1 as our NVRAM

heap manager so that (i) SQLite can map NVRAM to its

address spaces, (ii) a non-volatile memory page can be iden-

tified by a persistent namespace and its address even when

system reboots, and (iii) the NVRAM pages can be protected

by access permission as in the file system. It should be noted

that Heapo does not enforce memory persistency; the appli-

cations are responsible for properly adopting a persist bar-

rier, memory barrier, and cache line flush to guarantee the

failure atomicity.

System call is expensive. It crosses the protection bound-

ary and the parameters are copied. The system call overhead

becomes even more expensive if we rely on a kernel when

allocating and deallocating NVRAM pages. Thus, we de-

velop a user-level heap management scheme for NVWAL.

This scheme allows us to manage the log at the user level

and to minimize the system call interference. Instead of re-

lying on a kernel feature to protect an object against corrup-

tion and against the race condition, we implement a simple

tri-state flag for each NVRAM block, i.e., free, in-use, and

pending.

1 Heapo is available at https://github.com/ESOS-Lab/HEAPO

input: WalHeader wh, PagePtr p, bool commit

1 while p do

2 available_space = wh.getAvailableSpace() ;

3 dirty_frame = compute_WAL_frame(p) ;

4 if available_space < dirty_frame.size then

5 /* get an nvram block in pending mode */

6 block=nv_pre_malloc(BLOCK_SZ) ;

7 ptr = wh.add_new_block(block) ;

8 dmb(); /* data memory barrier */

9 cache_line_flush(ptr,ptr+sizeof(void*)) ;

10 dmb(); /* data memory barrier */

11 persist_barrier() ;

12 /* mark in-use flag of nvram block */

13 nv_malloc_set_used_flag(block) ;

14 end

15 next_nv_frame = wh.next_frame ;

16 /* store a dirty WAL frame in NVRAM */

17 memcpy(next_nv_frame, dirty_frame, ..) ;

18 nvFramePtrList.add(next_nv_frame) ;

19 p=p.next ;

20 end

21 f=nvFramePtrList.first() ;

22 dmb() ; /* data memory barrier */

23 while f do

24 cache_line_flush(f,f+f.header.frame_size) ;

25 f=nvFramePtrList.next() ;

26 end

27 dmb(); /* data memory barrier */

28 persist_barrier() ;

29 if commit==true then

30 lastFrame = nvFramePtrList.last() ;

31 lastFrame.commitMark |= COMMIT ;

32 dmb() ;

33 cache_line_flush(lastFrame.commitMark,...);

34 dmb() ;

35 persist_barrier() ;

36 end

Algorithm 1: sqliteWriteWalFramesToNVRAM()

To enable user level heap management, we implemented

nv_pre_malloc() and nv_malloc_set_used_flag()

system calls on top of Heapo so that the system could

manage the status of the allocated NVRAM blocks.

nv_pre_malloc() allocates a set of NVRAM pages that

occupy a consecutive address space, maps them to a frac-

tion of the virtual address space of a process, and sets

the status of the block to pending. When NVWAL per-

sistently saves the address of a newly allocated NVRAM

block in another NVRAM block as in a linked list, it calls

nv_malloc_set_used_flag() to change its status from

388

Figure 3: NVRAM Block Management in NVWAL

pending to in-use. If the system crashes while an NVRAM

block is still in pending status, the SQLite NVWAL recovery

process can safely deallocate the block.

Algorithm 1 shows how NVWAL allocates and manages

NVRAM blocks. Figure 3 illustrates an example of NVWAL

block management. The NVWAL heap consists of a meta-

data block and a set of pages from NVRAM. The metadata

block contains the permission and the state of each block:

free, pending or in-use.

In the example shown in Figure 3, if a transaction com-

mits a new dirty page p, SQLite searches for page p’s WAL

frame in the write-ahead log. If page p’s WAL frame is not

in the log, the entire page p and its WAL frame header are

copied to the available space of the last NVRAM block in

the linked list if they fit. If the available space in the last

NVRAM block is not large enough to hold them, we allo-

cate another NVRAM block from Heapo, add the block to

the linked list of NVRAM blocks, set the status of the block

to in-use, and store the dirty WAL frame and its header in

the newly allocated NVRAM block. If page p’s WAL frames

are found in the log, the differences between the page and

the WAL frame are computed to construct a small WAL

frame, as described in section 3.2; the small differential log

entry is stored as a WAL frame in the NVRAM log. With

the pre-allocated large NVRAM block, NVWAL reduces the

number of calls to the expensive NVRAM heap manager’s

nvmalloc(). In the experiments we will describe in sec-

tion 5, each NVRAM block stores 4.9 WAL frames on aver-

age when we fix the size of each NVRAM block to 8 KBytes.

4. Transaction-Aware Memory Persistency

Guarantee

When NVRAM is used to replace block device storage,

the atomicity and the durability of the database transactions

(d) Asynchronous Synchronization with Checksum

sfence

C. . . Check

Sum

Log
Log . . . Log

group clflush

+sfence

+ persist

C

clflush

+sfence

+ persist

. . .

(a) WAL on Block Device

a transaction

fdatasync() fdatasync()

P1 P2 . . . Pk C. . .

(b) Synchronization per Log on NVRAM

clflush

+sfence

+persist

C. . .

clflush

+sfence

clflush

+sfence

commit mark

NVRAM

NVRAM

NVRAM

clflush

+sfence

+persist

clflush

+sfence

+ persist

dirty pages

differential log

Log
Log . . . Log

Log
Log . . . Log

memcpy memcpy memcpy

memcpy memcpy memcpy

memcpy memcpy memcpy

(c) Transaction-aware Lazy Synchronization on NVRAM

Figure 4: Transaction-Aware Persistency Guarantee

must be ensured in the memory operations. NVWAL re-

quires that we explicitly flush the appropriate cache lines to

NVRAM to enforce the ordering constraints. The WAL re-

covery algorithm is based on the assumption that log entries

are stored in the order of database transactions. Unfortu-

nately, memory write operations can be arbitrarily reordered

in today’s processor designs. Without the hardware support

sfence or mfence alone cannot guarantee the propagating

of memory writes to NVRAM because writes can be cached

in L1 or L2 caches. In order to guarantee that memory write

operations flush data all the way down to NVRAM, cache

line flush operations such as clflush should accompany

persist barrier instructions such as Intel’s PCOMMIT, as

shown in Figure 4(b). Persist barrier ensures that the

cache lines queued in the memory subsystem are persisted

in NVRAM. Otherwise, a commit mark can be written to

NVRAM before log entries are stored.

In X86 processors, clflush instruction invalidates and

flushes a cache line from the memory cache hierarchy. In

the ARM v7 architecture, there exist two cache flush in-

389

input: u32 start, u32 end

1 u32 lineLen = getCachelineLen();

2 /* Align start to cache line boundary*/

3 start = start & ∼(lineLen - 1);

4 u32 mva = start;

5 while mva < end do

6 /* clean data cache line to PoC by MVA */

7 dccmvac(mva) ;

8 mva = mva + lineLen ;

9 end

Algorithm 2: cache_line_flush() system call for

ARM v7

structions: dccimvac and dccmvac. The former invalidates

the flushed cachelines while the latter does not. Android

4.4 has not implemented the clflush() system call. For

NVWAL, we implemented a cache_line_flush() system

call using a dccmvac instruction, as shown in Algorithm 2.

cache_line_flush() calls dccmvac instead of dccimvac

because write-ahead logging in SQLite does not, indeed,

need cache invalidation due to its append-only nature. We

implemented cache_line_flush() as a system call de-

spite the overhead of the kernel mode switch because the

dccmvac instruction needs to access register 15 in privileged

mode.

4.1 Transaction-Aware Memory Persistency

Guarantee

We exploit the ordering and persistency constraints in write-

ahead logging and develop a transaction-aware memory per-

sistency guarantee scheme. The idea is simple and straight-

forward. A log-commit operation consists of two phases: (i)

logging: writing a sequence of logs to NVRAM and (ii) com-

mit: putting the commit mark to NVRAM to validate the

logs. We enforce the ordering and persistency guarantee re-

quirement only between the two phases by calling the expen-

sive clflush, sfence, and persist barrier. The reason

behind this is that the ordering of writing WAL frames does

not necessarily have to be preserved as long as a transac-

tion’s commit mark is written after all the WAL frames are

written to NVRAM. It should be noted that (i) SQLite is a

serverless DBMS that does not allow multiple write transac-

tions to run concurrently and (ii) a write transaction requires

an exclusive lock on the entire database file.

Under a transaction-aware memory persistency guaran-

tee, so that the processors can better utilize caches and mem-

ory banks, NVWAL allows processors to flush the WAL

frames to NVRAM in any order. That is, NVWAL separates

the phase in which the logs are being copied to NVRAM

(memcpy()) and the phase in which the respective logs

are synchronized to NVRAM (cache_line_flush(p)).

Figure 4(c) schematically illustrates the behavior of the

transaction-aware memory persistency guarantee. The de-

tails of the implementation can be found in Algorithm 1.

There are a few implementation specific issues that de-

serve further elaboration. We implemented NVWAL in

ARM based platform. The cache line flush instruction

in an ARM, dccmvac, is non-blocking. In order to en-

sure that the memory operations that mark the commit

flag (line 30–34) are not reordered with the following

cache_line_flush(), the cache line flush instruction

should be preceded by the data memory barrier, dmb. The

dmb instruction completes only when any previous explicit

memory access instructions are all completed. The dmb() in

line 22 ensures that all WAL frames are written at least to

the L1 or L2 cache. In the proposed lazy synchronization,

a batch of non-blocking dccmvac instructions are called in

line 23–26 in order to flush the cache lines. The dmb() in

line 27 is also needed in order to block until the preced-

ing cache_line_flush() flushes all the WAL frames to

NVRAM. dmb() in line 32 also ensures that the memory

operation that marks the commit flag is not reordered with

cache_line_flush().

The commit mark resides at the WAL frame header and

is one bit long. As in a prior work [10], we assume that

NVRAM devices guarantee atomic writes for 8 bytes. This

means that even if a random power failure occurs, capacitors

in DIMM guarantee no corruption of 8 bytes. Because the

commit mark is just a bit flag, the commit mark can be safely

flushed to NVRAM with 8 bytes padding. If atomic writes

can be done in the unit of a cache line, as in [35], cache

line padding is necessary to prevent cache_line_flush()

from flushing an unintended memory region.

4.2 Asynchronous Commit

We can further allow processors to utilize caches and mem-

ory banks by compromising the consistency using checksum

bytes. Under this mechanism, we do not explicitly enforce

the barrier between the logging phase and the commit phase.

Instead, we compute the checksum of the logs that must pre-

cede the commit mark and store the checksum along with

the commit mark. Figure 4(d) illustrates NVWAL with asyn-

chronous log-commit; NVWAL asynchronously writes log

entries, a commit mark, and checksum bytes without calling

the cache line flush instructions.

Suppose a system crashes after it flushes a commit mark

and checksum bytes but before all log entries are written to

NVRAM. In the recovery phase, the checksum bytes will be

found to be inconsistent with the written log entries and this

will invalidate the commit mark of the transaction. Thus, the

database recovery process can consider that the transaction

has been aborted. However there is a chance that the writ-

ten checksum bytes accidentally match the unwritten log en-

tries. Hence, although the chance is very low, a system crash

may corrupt a database file. We consider this asynchronous

synchronization NVWAL as a performance comparison tar-

390

get because it minimizes the overhead of enforcing memory

constraints.

4.3 Checkpointing and Crash Recovery

In WAL, the committed dirty pages in NVRAM are written

back to the original database file in block device storage

via periodic checkpointing. In NVWAL, we reconstruct the

dirty pages by combining the log entries in the NVWAL

log and the respective original database pages. When all the

dirty pages are flushed to the database file via fsync(),

the NVRAM blocks for the write-ahead logs can be safely

truncated from the end of the list to the beginning. For each

NVRAM block, we first set the tri-state flag of the NVRAM

block to free and then call Heapo’s nvfree() system call.

In SQLite WAL mode, the log file contains a complete

history of dirty pages committed by transactions. When a

system crashes, SQLite can recover the transactions by re-

playing the logs. The recovery algorithm of NVWAL is

not very different from SQLite’s stock recovery algorithm

except that the dirty pages are reconstructed from byte-

addressable WAL frames. However, complications can arise

if the system crashes while updating the metadata of the

NVRAM blocks.

NVWAL is for a forth-coming architecture, which is

not available yet. Without a persist barrier, we are un-

able to perform a physical power-off test for NVWAL be-

cause clflush and the emulated persist barrier do not

guarantee the failure atomicity. Instead, we resort to dis-

cussing the NVRAM recovery algorithm under various fail-

ure cases that can occur while a transaction is executing

sqliteWriteWalFramesToNVRAM().

• If a system fails while allocating an NVRAM block (line 6

of Algorithm 1), the allocated NVRAM block is marked

as pending, but SQLite may not have written its refer-

ence in another persistent NVRAM block. When the sys-

tem recovers, the heap manager can reclaim any pending

NVRAM blocks to prevent a memory leak.

• If a system crashes after an NVRAM reference was stored

in the WAL header but before the block was marked as in-

use, the SQLite recovery process will find that the block

was freed by the NVRAM heap manager’s recovery pro-

cess and the block’s reference can be safely deleted.

• If system crashes while copying a dirty WAL frame

to NVRAM using memcpy() (line 22 of Algorithm 1),

SQLite can easily recover from the failure because the

frame’s transaction has not written a commit mark, thus

the transaction is considered to have been aborted. In

database transactions, writing a commit mark is the last

operation of the transaction commit process.

• Recovery from checkpointing process’ failure is also triv-

ial and not different from legacy checkpointing recovery.

Because the write-ahead logs will not be deleted before all

the dirty pages are persistently stored in the database file,

the SQLite recovery process can simply replay the check-

pointing process to recover from the failure.

4.4 NVWAL and Persistency Model

In this section, we briefly discuss NVWAL implementation

for strict and relaxed persistency models.

Memory persistency, proposed by Pelley et al [37], is a

framework that provides an interface for enforcing the order-

ing constraints on NVRAM writes. The ordering constraints

are referred to as “persists” to distinguish them from regular

writes to the volatile memory [37]. Similar to memory con-

sistency, memory persistency is largely classified into two

classes – strict persistency and relaxed persistency.

Strict persistency integrates memory persistency into the

memory consistency [37]. Under strict persistency, persist

order must match the volatile memory order specified by the

memory consistency model. Strict persistency is a simple

and intuitive model in the sense that it provides a unified

framework to reason about possible volatile memory and

persist orders. In addition, it requires no additional persist

barriers because the existing memory barriers can be used to

specify persist ordering constraints. Strict persistency, how-

ever, may significantly limit persist performance because it

enforces strict ordering constraints between persist opera-

tions.

In contrast, relaxed persistency decouples the memory

consistency and persistency models [37]. Under relaxed per-

sistency, persist order may deviate from the volatile mem-

ory order specified by the memory consistency model. Re-

laxed persistency requires persist barriers to enforce the or-

der of persist operations. A representative relaxed persis-

tency model is epoch persistency [10, 37]. In epoch persis-

tency, persist barriers are used to divide persist operations

into different persist epochs. Persist barriers ensure that all

the persists before the barrier occur strictly before any persist

after the barrier. Persists in the same epoch, however, are al-

lowed to concurrently execute, potentially improving persist

performance. A major disadvantage of relaxed persistency is

the increased programming complexity; programmers must

correctly annotate their code using the two types of barriers

(i.e., memory and persist barriers).

With memory persistency, it is the responsibility of the

underlying hardware to enforce the ordering constraints of

NVRAM writes specified in the (annotated) code. Therefore,

no extra code is required to explicitly flush appropriate cache

lines to NVRAM, easing the programmer’s burden.

Strict persistency significantly simplifies the NVWAL

implementation shown in Algorithm 1 because all the cache-

flush operations and persist barriers can be safely removed.

However, we conjecture that strict persistency may degrade

the performance of NVWAL because it enforces strict (but

unnecessary) ordering constraints between persists when

writing the log entries to NVRAM.

Relaxed persistency simplifies the NVWAL implementa-

tion shown in Algorithm 1 because all the cache-flush oper-

391

of insertion per txn 1 2 4 8 16 32

of cache line flushes 139.49 153.32 181.224 236.52 349.168 574.464

Table 1: Average number of cache line flushes per transac-

tion for the experiments shown in Figure 5

ations can be safely removed. We expect that relaxed persis-

tency, because it can dynamically reorder persist operations

when copying the WAL frames from DRAM to NVRAM,

will induce a level of performance for NVWAL higher than

that possible when using strict persistency. Due to the un-

availability of real hardware that can implement strict and

relaxed persistency, we leave a performance evaluation of

NVWAL under various memory persistency models to our

future work.

5. Experiments

We implemented NVWAL in SQLite 3.7.11 and integrated

it with an NVRAM heap manager - Heapo [16]. We first

measure the performance of NVWAL using a Tuna NVRAM

emulation board [2, 29].

Tuna is an NVRAM emulation board with Xilinx Zynq

XC7Z020 ARM-FPGA SoC. The Tuna board consists of

an ARM Cortex-A9 processor with L2 caches and FPGA

programmable logic that controls the read/write latency of

one of the two DRAMs in order to emulate NVRAM.

The emulated NVRAM has a separate power switch for

non-volatility emulation. The frequency of the emulated

NVRAM is 400MHz (DDR3-800) while that of the volatile

DRAM is 533MHz (DDR3-1066); the data width of the em-

ulated NVRAM is 64 bits while that of DRAM is 32 bits.

The size of the cache line is 32 bytes. The write latency of

the emulated NVRAM can be adjusted between 400 nsec

and 2000 nsec.

5.1 Overhead of Ordering Constraints

First, we quantify the overhead of enforcing the ordering

constraints in SQLite write-ahead logging. In the configura-

tion denoted as E (eager synchronization), we make SQLite

write-ahead logging call cache_line_flush() system call

and memory barrier immediately after each memcpy() func-

tion call per log entry as illustrated in Figure 4(b). In the

other configuration, denoted as L (lazy synchronization),

SQLite calls a batch of cache_line_flush() system calls

for all the dirty log entries in a transaction right before its

commit mark is stored, as illustrated in Figure 4(c).

We run the experiments on a Tuna NVRAM emulation

board and set the write latency of the NVRAM to 500 nsec as

in [37]. Figure 5 shows the benefits of lazy synchronization.

As we insert more records into the database table in a single

transaction, more dirty bytes are written to NVRAM and the

time spent for memory writes increases. Table 1 shows how

many cache lines are flushed per transaction (the number of

 0

 20

 40

 60

 80

 100

 120

 140

 160

L E L E L E L E L E L E

T
im

e
(u

se
c)

Number of Insertions per Transaction

L: lazy synchronization
E: eager synchronization

dmb (memory fence)
dccmvac (cacheline flush)

dccmvac+dmb
memcpy

32168421

Figure 5: Quantifying the benefit of allowing processors to

reorder memory writes

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 32

P
er

ce
n
ta

g
e

(%
)

Number of Insertions per Transaction

L: lazy synchronization
E: eager synchronization

Figure 6: Proportion of ordering constraint overhead to

query execution time

called dccmvac instructions) with varying the number of in-

sertions per transaction. When each transaction inserts a sin-

gle data record, the time spent on dccmvac, dmb, and kernel

mode switching is only 19.3 usec per transaction. Consider-

ing that the query execution time is 424 usec, this overhead

is just 4.6% of the query execution time as shown in Fig-

ure 6. However, when a transaction inserts 32 data records,

the query execution time is 5828 usec while the overhead of

the write ordering constraints is 46.5 usec (only 0.8 % of the

execution time). SQLite throughput is governed more by the

computation performance than by the I/O performance, es-

pecially when a WAL file is located in fast NVRAM. Hence,

improving the I/O performance by reordering the memory

writes does not significantly affect the ratio of the ordering

constraint overhead to the query execution time, as shown in

Figure 6.

In eager synchronization, denoted as E, we do not allow

reordering of memory writes. But, in lazy synchronization

denoted as L, we call memcpy() for all dirty portions of the

WAL frames in a transaction before NVWAL explicitly calls

dccmvac. Therefore the dirty bytes in the L1 or L2 cache

could have been already evicted. I.e., in lazy synchroniza-

tion, the overhead of dccmvac is masked by the overhead of

memcpy(). As in epoch persistency, the lazy synchroniza-

tion decouples the volatile memory order from the persist or-

der, which fits quite well with the database transaction con-

cept.

392

of operation per txn 1 2 4 8 16 32

Insert 4431.8 4874.2 5767.1 7536.6 11141.1 18350.0

Insert (Diff) 726.8 863.0 1139.7 1684.0 2776.0 4984.0

Delete 4890.6 5685.2 7274.4 10452.9 16842.7 22282.2

Delete (Diff) 1555.2 2236.8 3576.9 5863.0 9412.6 11452.9

Update 4096 4210.6 4440.0 4882.4 5832.7 7733.2

Update (Diff) 647.7 830.3 1186.5 1857.9 3191.5 5529.6

Table 2: Average number of bytes written to NVRAM

The amounts of time spent on memcpy() in both schemes

are similar in the experiments, as shown in Figure 5. How-

ever, in E, the dccmvac and dmb together perform up to 23%

slower than does dccmvac in L because E does not allow the

reordering of memory writes. By separating memcpy() and

dccmvac, write-ahead logging can eliminate about 2∼23%

of the total overhead of enforcing persistency (19.3 ∼

46.4 usec vs. 19.7 ∼ 60.7 usec). The overhead of dmb in

L is negligible because dmb is called at most only four times

in our implementation.

5.2 Differential Logging and I/O

Table 2 shows the I/O volume written to NVRAM with byte

granularity differential logging and with legacy block gran-

ularity logging. For the insert, update, and delete operations,

byte-granularity differential logging eliminates 73∼84%,

29∼85%, and 49∼69% of the unnecessary I/Os to NVRAM,

respectively. In SQLite, each B-tree page appends a newly

inserted set of data to the end of the used region. Thus,

the size of a WAL log entry generated by byte-granularity

differential logging is often small. But, for the update and

delete operations, because it has to shift some log entries

to avoid fragmentation issues, the write-ahead logging may

touch a large portion of the B-tree page. Therefore, the in-

sert transaction gets the most performance benefit from byte-

granularity logging while the performance benefits for the

update and delete transactions are moderate.

5.3 Transaction Throughput and NVRAM Latency

For the experiments shown in Figure 7, we measure the

throughput of NVWAL with the SQLite benchmark app Mo-

bibench [1] with varying the latency of NVRAM. Using Mo-

bibench, we submit 1,000 transactions that insert, update, or

delete a single 100-byte data record per transaction. In the

experiments, we do not include the time for periodic check-

pointing that sporadically flushes the logged WAL frames to

the slow block device storage. It should be noted that check-

pointing affects the performance of only one out of hundreds

of transactions; this overhead is not relevant to the write la-

tency of NVRAM.

The write latency of NVRAM is likely to be higher than

the write latency of DRAM. For example, phase change

memory, because it has access latencies in the hundreds

of nanoseconds, is about 2∼5 times slower than DRAM

[10, 24]. In the experiments, we vary the write latency of

NVRAM from 400 nsec to 1900 nsec. Overall, as the write

 1800
 1900
 2000
 2100
 2200
 2300
 2400
 2500
 2600
 2700

400 700 1000 1300 1600 1900T
h
ro

u
g
h
p
u
t

(t
ra

n
sa

ct
io

n
/s

ec
)

NVRAM write latency (nano sec)

(a) Insert (Average of 5 Runs)

 1700

 1800

 1900

 2000

 2100

 2200

400 700 1000 1300 1600 1900T
h
ro

u
g
h
p
u
t

(t
ra

n
sa

ct
io

n
/s

ec
)

NVRAM write latency (nano sec)

(b) Update (Average of 5 Runs)

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

400 700 1000 1300 1600 1900

T
h
ro

u
g
h
p
u
t

(t
ra

n
sa

ct
io

n
/s

ec
)

NVRAM write latency (nano sec)

NVWAL LS

NVWAL LS+Diff

NVWAL CS+Diff

NVWAL UH+LS

NVWAL UH+LS+Diff

NVWAL UH+CS+Diff

(c) Delete (Average of 5 Runs)

Figure 7: Transaction throughput with varying latency of

NVRAM (Average of 5 runs on Tuna)

latency increases, the transaction throughput decreases in a

linear fashion. However, the latency adjustment affects the

throughput of some NVWAL schemes more severely than

it does others. Due to the unavailability of persist barrier

instruction, we simulate the persist barrier overhead by in-

troducing a 1 usec delay using nop instructions. We also

assume the PoC is the system main memory - DRAM and

NVRAM. In most cases, the PoC is the system main mem-

ory and dccmvac flushes data to the main memory. However,

ARM architecture does not prohibit the implementation of

outer caches beyond the PoC. We believe the outer cache

should be disabled when NVRAM is used. Otherwise, outer

caches should be explicitly flushed before the persist barrier

instruction is called.

NVWAL LS denotes the NVWAL scheme with lazy syn-

chronization, which calls cache line flush instructions in a

lazy manner without hurting the correctness of the database

transactions as illustrated in Figure 4(c). NVWAL LS does

not employ byte-granularity differential logging and user-

393

level heap; it calls Heapo’s nvmalloc() system call for ev-

ery dirty WAL frame.

In NVWAL LS+Diff, SQLite performs lazy synchroniza-

tion. Additionally, it adopts byte-granularity differential log-

ging. When the B-tree node size is 4 Kbytes, NVWAL LS

calls 128 cache line flush instructions, one memory bar-

rier instruction, and one persist barrier instruction for each

WAL frame. It then calls another cache line flush instruction,

memory barrier instruction, and persist barrier instruction

for a commit mark. However, in NVWAL LS+Diff, the av-

erage number of cache line flush instructions per transaction

is reduced, and hence NVWAL LS+Diff consistently outper-

forms NVWAL+LS, yielding up to 28% higher throughput.

In NVWAL CS+Diff, NVWAL asynchronously flushes log

entries without explicitly calling cache line flush instruc-

tions, as illustrated in Figure 4(d). In this variant of NVWAL,

we call the cache line flush instruction and memory barrier

only for a commit mark and checksum bytes. In this way,

we minimize the overhead of the ordering constraints. How-

ever, the performance benefit comes with a potential incon-

sistency.

In NVWAL UH+LS, NVWAL employs the user-level

heap, which reduces the number of calls to the expensive

NVRAM heap manager’s nvmalloc() function. In the ex-

periments shown in Figure 7, we call Heapo’s nvmalloc()

and allocate 8Kbytes NVRAM block that can store two

WAL frames. By saving the overhead of calling an expen-

sive NVRAM heap manager’s function, NVWAL UH+LS

achieves a 6% performance gain over NVWAL LS.

In NVWAL UH+LS+Diff, NVWAL employs user-

level heap, lazy synchronization, and byte-granularity

differential logging. Interestingly, the performance of

NVWAL UH+LS+Diff is comparable to that of NVWAL

UH+CS+Diff, which uses an user-level heap, byte gran-

ularity differential logging, and checksum bytes. Because

NVWAL UH+CS+Diff minimizes the number of bytes to

be written to NVRAM and also minimizes the overhead of

the cache_line_flush() system calls and memory bar-

rier, it shows the highest transaction throughput. Considering

that NVWAL UH+CS+Diff is vulnerable to the inconsistency

problem that is inherent in probabilistic checksum bytes,

NVWAL UH+LS+Diff’s comparable performance makes it

a promising write-ahead logging scheme for NVRAM, be-

cause it does not compromise the correctness of database

transactions.

As the write latency of NVRAM increases, the benefit

of using the proposed schemes becomes more significant.

When the write latency of NVRAM is set to 1942 nsec,

NVWAL UH+LS+Diff yields throughput up to 37% higher

than that of NVWAL LS.

5.4 The Real Numbers: Nexus 5

In the last set of experiments, we examine the performance

of NVWAL using a commercially available smartphone - the

Nexus 5, which has a 2.26 GHz Snapdragon 800 processor, 2

GB DDR memory and 16 GB SanDisk iNAND eMMC 4.51

SDIN8DE4 formatted with an EXT4 file system. As for the

NVRAM emulation on Nexus 5, we assume that a specific

address range of DRAM is NVRAM, i.e., that NVRAM is

attached to the memory bus. NVRAM write latency is varied

by inserting nop instructions. The stock SQLite WAL imple-

mentation does not use the emulated NVRAM but stores log

pages in flash memory instead. We fix the CPU frequency to

the maximum 2.26 GHz to reduce the standard deviation of

the experiments. The Snapdragon 800 processor’s cache line

size is 64 bytes. We run Mobibench using SQLite 3.7.11 and

Android 4.4 on Nexus 5.

Recent studies [17, 23, 30] have reported that SQLite

on flash memory suffers from unexpected I/O volume and

that SQLite write-ahead logging unnecessarily doubles the

I/O traffic in the current implementation (SQLite 3.7.11). In

order to fix these problems and compare the performance of

SQLite WAL on flash memory against that on NVWAL in a

fair way, we implemented two optimizations that help avoid

the unnecessary I/O traffic and that significantly improve the

performance of SQLite on flash memory.

For each dirty page, SQLite creates a 24-byte frame

header that consists of page number, commit mark, check-

sum values, etc., and that appends the dirty page to it. Due to

the additional 24-byte frame header of the WAL frames, each

WAL frame becomes larger than the page size, which causes

the WAL frames not to be aligned with the page boundaries.

With such misaligned pages, a write operation for a single

database page causes at least two pages to be written to

the block device storage. In order to resolve the misaligned

WAL frame problem, we modified SQLite’s B-tree split al-

gorithm so that it splits an overflow page early and the last

24 bytes of all B-tree pages are not used. By doing so, 24

bytes of WAL frame header and WAL frame can be merged

and stored in a single page of a WAL file. We implemented

the same split algorithm for NVWAL.

Another ad-hoc improvement we made on SQLite WAL

is pre-allocation of WAL log pages as in WALDIO [30]. For

each dirty page, a transaction calls write() that appends

one or two pages to the end of a log file. As the appended

pages increase the size of the WAL log file, the increased

file size must be updated in an inode. Because the writes

in WAL mode are all sequential and because the size of the

log file keeps increasing until checkpointing truncates it, pre-

allocating multiple pages once will help the next transactions

write log frames without increasing the file size. The only

negative aspect of this pre-allocation is that it may waste

several disk pages if there is no next transaction. In terms

of EXT4 journal overhead, allocating two new pages causes

overhead slightly higher than that induced by allocating only

one page. However, that overhead is much smaller than the

overhead for allocating another page later. The size of the

pre-allocated pages can be fixed at a specific number based

394

 5

 5.2

 5.4

 5.6

 5.8

 6

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

B
lo

c
k
 A

d
d

re
s
s
(x

1
0

^3
)

Time (sec)

EXT4 journal(WAL)
.db-wal(WAL)

.db(WAL)

EXT4 journal(Optimized WAL)
.db-wal(Optimized WAL)

.db(Optimized WAL)

Figure 8: Block Trace of SQLite Insert Transaction with

Optimizations

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 3 4 6 9 14 28 47 93 183 363T
h
ro

u
g
h
p
u
t

(t
ra

n
sa

ct
io

n
/s

ec
)

Emulated NVRAM latency (usec)

NVWAL UH+LS+Diff on NVRAM

NVWAL LS on NVRAM

Optimized WAL on eMMC

WAL on eMMC

Figure 9: Transaction Throughput of NVWAL on Emulated

NVRAM vs. Optimized WAL on eMMC Memory (Average

of 5 Runs)

on the database access patterns or the size can be doubled

every time the pre-allocated pages fill up.

Figure 8 shows a block I/O trace of 10 transactions in

stock SQLite WAL mode and another block I/O trace of 10

transactions in our optimized WAL mode. For a single insert

transaction, one block (4KB) is written to the .db-wal file

but two blocks(16KB, 4KB) are written to the EXT4 journal

to update the metadata of the log file in the ordered-mode

EXT4 journal. In our optimized WAL mode, SQLite pre-

allocates 8 pages when a transaction writes a log frame for

the first time, even if the system needs just one page. If

another transaction needs to write log frames while there is

no available pre-allocated page, we double the number of

pages to be pre-allocated each time and SQLite allocates 16

new pages to the log file. Compared to the block trace of

the WAL mode, allocating multiple log pages in advance

reduces EXT4 journal accesses by 40% (172 KB vs. 284

KB), and the batch execution time in our optimized WAL

mode decreases from 90 msec to 74 msec.

In Figure 9, we measure the transaction throughput of

NVWAL on Nexus 5. We run 1000 insert transactions with

an empty SQLite database table. Each transaction inserts a

single 100-byte record into the table. The NVRAM write la-

tency on the Nexus 5 is varied by adding nop instructions af-

ter each clflush instruction, which is also used to emulate

the NVRAM write latency in [15]. We set the checkpointing

interval to 1000 dirty WAL frames, which is the default set-

ting in SQLite. As for the sporadic checkpointing overhead,

we amortize the overhead across 1000 transactions.

Our optimized WAL on flash memory yields 541 trans-

actions/sec while NVWAL LS and NVWAL UH+LS+Diff on

NVRAM (DRAM with 2 usec write latency) exhibit 5393

and 5812 transactions/sec, respectively. As we increase the

write latency, the throughput of NVWAL decreases. When

the write latency becomes 47 usec, NVWAL LS on the emu-

lated NVRAM shows throughput similar to that of WAL on

flash memory. When the write latency is set to 230 usec,

NVWAL UH+LS+Diff also shows performance similar to

that of WAL on flash memory. We need to stress that an

NVRAM write latency of 230 usec is very conservative.

The experiments on the Nexus 5 are not precisely iden-

tical to the experiments on the Tuna board because the

former do not include the overhead of checkpoint opera-

tion, whereas the latter include the checkpointing overhead.

Hence, the experiments on the Nexus 5 stand for the sus-

tained throughput, while the experiments on the Tuna stand

for the peak throughput.

6. Related Work

Condit et al. [10] designed a file system BPFS and a hard-

ware architecture for persistent, byte-addressable memory.

BPFS proposes a new epoch barrier instruction that specifies

an ordering of groups of persists. BPFS uses short-circuit

shadow paging, which provides atomic, fine-grained updates

to persistent storage. However, epoch barrier instruction re-

quires a modification of the memory hierarchy because it

considers cache-bypassing writes, and because cache flushes

cause inefficiency.

Fang et al. [12] proposed to write log records directly

into storage class memory (SCM), which provides an epoch

barrier without caching them in volatile DRAM. In their

logging scheme, log records stored in SCM are periodically

archived to a WAL file in block device storage. Unlike our

NVWAL, their logging scheme requires log records to be

stored twice - once in NVRAM and once in block device

storage before they are applied to the database file.

SCMFS proposed by Wu et al. [46] is another file system

designed for non-volatile memory; it uses only clflush

and mfence instructions without any modification to the

hardware; however, it is unclear if this design guarantees

consistency if the system crashes.

With non-volatile memory, memory write errors from ap-

plication bugs can cause serious and permanent system cor-

ruption. Moraru et al [35] proposed NVMalloc - a memory

allocator for NVRAM that prevents memory wear-out and

increases robustness against erroneous memory writes. NV-

Heaps [9], Mnemosyne [43], Heapo [16], and Atlas [7] are

persistent object management systems for NVRAM. These

works are complementary to our work as NVWAL can uti-

lize persistent and byte-addressable heap managers or file

systems.

395

In the future, when NVRAM and a good imple-

mentation of the transactional memory support such as

Mnemosyne [43] become available, it may be possible to

eliminate some use cases of SQLite because some appli-

cation developers use SQLite as a failure atomic persistent

storage. However, RDBMS provides the same level of fail-

ure atomic persistent storage, with the added benefit of using

declarative query language (SQL), pre-implemented rela-

tional operators, indexing, and query optimization, to name

just a few of them. Hence, we expect that NVWAL and per-

sistent heap will be complementary to each other, rather than

in competition.

In Android smartphones, due to the overhead of journal-

ing activity, one of the major performance bottlenecks has

been shown to be the storage of the device [17, 21, 27].

Recently, a fair amount of work has been done to lever-

age the non-volatility of NVRAM to resolve the perfor-

mance and scalability issues of database logging [5, 8, 12,

15, 19, 20, 22, 25, 32, 39–42, 44, 45]. Kim et al. [23] pro-

posed a version-based B-tree for flash memory. The version-

based B-tree (CDDS) has also been studied for NVRAM by

Venkataraman et al. [41]. CDDS allows atomic updates on

NVRAM without requiring logging. NV-tree is another B-

tree for NVRAM, specifically designed to achieve data con-

sistency on NVRAM while reducing the number of cache

line flush operations.

NV-Logging proposed by Huang et al. [15], proposes

a per-transaction logging method for OLTP systems us-

ing NVRAM; this allows us to avoid the bottleneck of

centralized log buffers. Unlike NVWAL, NV-Logging [15]

calls clflush immediately after every memcpy() opera-

tion. Huang et al. [15] compared their per-transaction log-

ging against that of an NV-Disk [20, 22] - NVRAM accessed

via standard file I/O interface; they showed that replacing

the disk or flash memory with NVRAM without redesigning

the file system cache and I/O interface can cause the system

to suffers from high overhead [15]. Our NVWAL is different

from NV-Logging in that NV-Logging focuses on scalability

issues of processing concurrent queries, while SQLite does

not allow concurrent transactions.

The related work most similar to ours is SQLite/PPL,

recently proposed by Oh et al. [36]. They proposed a per-

page logging scheme for SQLite; this system stores the disk-

based WAL frames in PCM memory, which takes no account

of byte-addressability, reordering of memory writes, or the

overhead of managing a persistent heap.

Lee et al. [25] proposed to merge the buffer cache and

the journal for byte-addressable NVRAM by converting the

buffer cache blocks to journal logs simply by changing the

status of the blocks to a frozen state. The method of Blurred

Persistence, proposed by Lu et al. [32], blurs the boundary

between volatility and persistency by allowing processors to

persist uncommitted data in NVRAM and by detecting the

uncommitted data later via execution in log if necessary. Our

work is different from theirs in that NVWAL targets database

systems that retain DRAM, not NVRAM, as a volatile buffer

cache.

Pelley et al. [37] conducted a memory trace analysis and

showed that replacing a disk with NVRAM, which supports

a persist barrier, can achieve significantly higher through-

put than that of disks. To further improve the performance

of OLTP, they proposed a group commit protocol that per-

sists the committed transactions in batches in order to reduce

the number of required barriers. Our method of transaction-

aware lazy synchronization is different from their idea of

group commit in that they assumed that the ordering of mem-

ory writes would be enforced through the persist barrier,

which does not exist yet, while we evaluated SQLite WAL

on real hardware an emulated NVRAM board with ARM v7

instructions and no modifications to the processor design.

7. Conclusions

Emerging non-volatile memory devices are expected to sub-

stitute slow block device storage so as to persistently store

frequently accessed data. In this work, we design and imple-

ment write-ahead-logging on NVRAM (NVWAL) and show

that NVWAL can minimize the overhead of managing and

synchronizing log entries on NVRAM via i) transaction-

aware lazy synchronization, ii) a user-level NVRAM block

manager, and iii) byte-granularity differential logging.

Through our extensive performance evaluation, we show

that database logging can be optimized to be insensitive to

NVRAM latency, and that the overhead of guaranteeing the

failure atomicity is almost free. NVWAL with the optimiza-

tions exhibits transaction throughput up to 37% higher than

that of non-optimized WAL on NVRAM; when NVRAM la-

tency is smaller than 2 usec, NVWAL achieves at least 10x

higher than that of legacy WAL on flash memory.

We can draw three lessons from this study. First, em-

ploying an NVRAM in database logging is not an option

but a necessity. Second, the aggregate overhead of the per-

sist barrier instructions is insignificant from the application’s

point of view. Third, NVRAM latency is barely propagated

to SQLite performance. NVWAL significantly decreases the

logging overhead in SQLite and makes the workload further

CPU bound. As a result, SQLite performance becomes rela-

tively insensitive to NVRAM latency.

8. Acknowledgments

We would like to thank our shepherd Shankar Pasupa-

thy and the anonymous reviewers for their suggestions on

early drafts of this paper. This research was supported by

MKE/KEIT (No.10041608, Embedded System Software for

New Memory based Smart Devices). The corresponding au-

thor of this paper is Beomseok Nam.

References

[1] Mobibench. https://github.com/ESOS-Lab/Mobibench.

396

[2] OpenNVRAM. http://opennvram.org/.

[3] Sqlite. http://www.sqlite.org/.

[4] S. Agarwal, R. Garg, M. S. Gupta, , and J. E. Moreira. Adap-

tive incremental checkpointing for massively parallel systems.

In Proceedings of the 18th annual international conference on

Supercomputing, 2004.

[5] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about stor-

age & recovery methods for non-volatile memory database

systems. In Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 707–722.

ACM, 2015.

[6] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Implica-

tions of cpu caching on byte-addressable non-volatile memory

programming. http://www.hpl.hp.com/techreports/2012/HPL-

2012-236.pdf, 2012.

[7] D. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Lever-

aging locks for non-volatile memory consistency. In Pro-

ceeding of the 2014 ACM International Conference on Ob-

ject Oriented Programming Systems Languages & Applica-

tions (OOPSLA), pages 433–452, 2014.

[8] A. Chatzistergiou, M. Cintra, and S. D. Viglas. Rewind: Re-

covery write-ahead system for in-memory non-volatile data-

structures. Proceedings of the VLDB Endowment, 8(5):497–

508, 2015.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.

Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making per-

sisten objects fast and safe with next-generation, non-volatile

memories. In Proceedings of the 16th International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2011.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C.

Lee, D. Burger, and D. Coetzee. Better i/o through byte-

addressable, persistent memory. In Proceedings of the 22nd

ACM Symposium on Operating Systems Principles (SOSP),

2009.

[11] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,

D. Reddy, R. Sankaran, and J. Jackson. System software

for persistent memory. In Proceedings of the 9th ACM Eu-

ropean Conference on Computer Systems (EuroSys), pages

15:1–15:15, 2014.

[12] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High

performance database logging using storage class memory.

In Proceedings of the 27th International Conference on Data

Engineering (ICDE), pages 1221–1231, 2011.

[13] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini. Transparent,

incremental checkpointing at kernel level: A foundation for

fault tolerance for parallel computers. In Proceedings of the

ACM/IEEE SC2005 Conference, 2005.

[14] G. Graefe. A survey of B-tree logging and recovery tech-

niques. ACM Transactions on Database Systems, 37(1), Feb.

2012.

[15] J. Huang, K. Schwan, and M. K. Qureshi. Nvram-aware

logging in transaction systems. Proceedings of the VLDB

Endowment, 8(4), 2014.

[16] T. Hwang, J. Jung, and Y. Won. Heapo: Heap-based persistent

object store. ACM Transactions on Storage (TOS), 11(1),

2014.

[17] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O stack

optimization for smartphones. In Proceedings of the USENIX

Annual Technical Conference (ATC), 2013.

[18] J. Jung and Y. Won. nvramdisk: A transactional block devie

driver for non-volatile ram. IEEE Transactions on Computers,

http://dx.doi.org/10.1109/TC.2015.2428708, 2015.

[19] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon. Frash:

Exploiting storage class memory in hybrid file system for

hierarchical storage. ACM Transactions on Storage (TOS),

6(1):3, 2010.

[20] D. Kim, E. Lee, S. Ahn, and H. Bahn. Improving the stor-

age performance of smartphones through journaling in non-

volatile memory. Consumer Electronics, IEEE Transactions

on, 59(3):556–561, 2013.

[21] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting storage for

smartphones. In Proceedings of the 11th USENIX conference

on File and Storage Technologies (FAST), 2013.

[22] J. Kim, C. Min, and Y. I. Eom. Reducing Excessive Journaling

Overhead with Small-Sized NVRAM for Mobile Devices.

IEEE Transactions on Consumer Electronics, 6(2), June 2014.

[23] W.-H. Kim, B. Nam, D. Park, and Y. Won. Resolving journ-

ling of journal anomaly in android i/o: Multi-version b-tree

with lazy split. In Proceedings of the 11th USENIX confer-

ence on File and Storage Technologies (FAST), 2014.

[24] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting

phase change memory as a scalable DRAM alternative. In

Proceedings of the 36th International Symposium on Com-

puter Architecture (ISCA), 2009.

[25] E. Lee, H. Bahn, and S. H. Noh. Unioning of the buffer cache

and journaling layers with non-volatile memory. In Proceed-

ings of the 11th USENIX conference on File and Storage Tech-

nologies (FAST), 2013.

[26] J. Lee, K. Kim, and S. Cha. Differential logging: A commu-

tative and associative logging scheme for highly parallel main

memory database. In Proceedings of the 17th International

Conference on Data Engineering (ICDE), 2001.

[27] K. Lee and Y. Won. Smart layers and dumb result: Io char-

acterization of an android-based smartphone. In Proceedings

of the 12th International Conference on Embedded Software

(EMSOFT 2012), 2012.

[28] S.-W. Lee and B. Moon. Design of flash-based dbms: An

in-page logging approach. In Proceedings of 2007 ACM

SIGMOD International Conference on Management of Data

(SIGMOD), 2007.

[29] T. Lee, D. Kim, H. Park, and S. Yoo. Fpga-based prototyping

systems for emerging memory technologies. In Proceedings

of the 25th IEEE International Symposium on Rapid System

Prototyping (RSP), 2014.

[30] W. Lee, K. Lee, H. Son, W.-H. Kim, B. Nam, and Y. Won.

Waldio: Eliminating the filesystem journaling in resolving the

journaling of journal anomaly. In Proceedings of the 2015

USENIX Anual Technical Conference (ATC), 2015.

[31] M. Li and P. P. C. Lee. Toward i/o-efficient protection against

silent data corruptions in raid arrays. In Proceedings of the

397

30th International Conference on Massive Storage Systems

and Technology (MSST), 2014.

[32] Y. Lu, J. Shu, and L. Sun. Blurred persistence in transac-

tional persistent memory. In Proceedings of the 31st Interna-

tional Conference on Massive Storage Systems and Technol-

ogy (MSST), 2015.

[33] H. Luo, L. Tian, and H. Jiang. qNVRAM: quasi non-

volatile ram for low overhead persistency enforcement in

smartphones. In Proceedings of the 6th USENIX Workshop on

Hot Topics in Storage and File Systems (HotStorage), 2014.

[34] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng. Overview

of emerging nonvolatile memory technologies. Nanoscale

research letters, 9(1):1–33, 2014.

[35] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia,

N. Binkert, and P. Ranganathan. Consistent, durable, and safe

memory management for byte-addressable non volatile main

memory. In Proceedings of the ACM Conference on Timely

Results in Operating Systems (TRIOS), 2013.

[36] G. Oh, S. Kim, S.-W. Lee, and B. Moon. Sqlite optimization

with phase change memory for mobile applications. Proceed-

ings of the VLDB Endowment (PVLDB), 8(12):1454–1465,

2015.

[37] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persis-

tency. In Proceedings of the 41st International Symposium on

Computer Architecture (ISCA), pages 265–276, 2014.

[38] K. Shen, S. Park, and M. Zhu. Journaling of journal is (almost)

free. In Proceedings of the 11th USENIX conference on File

and Storage Technologies (FAST), 2014.

[39] M. Son, S. Lee, K. Kim, S. Yoo, and S. Lee. A small non-

volatile write buffer to reduce storage writes in smartphones.

In Proceedings of the 2015 Design, Automation & Test in

Europe Conference & Exhibition, DATE ’15, pages 713–718,

San Jose, CA, USA, 2015. EDA Consortium. ISBN 978-3-

9815370-4-8.

[40] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R.

Ganger. Metadata efficiency in versioning file systems. In

Proceedings of the 2nd USENIX conference on File and Stor-

age Technologies (FAST), pages 43–58, 2003.

[41] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Camp-

bell. Consistent and durable data structures for non-volatile

byte-addressable memory. In 9th USENIX conference on File

and Storage Technologies (FAST), 2011.

[42] S. D. Viglas. Data management in non-volatile memory. In

Proceedings of the 2015 ACM SIGMOD International Confer-

ence on Management of Data, pages 1707–1711. ACM, 2015.

[43] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:

Lightweight persistent memory. In 16th International Con-

ference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2011.

[44] T. Wang and R. Johnson. Scalable logging through emerging

non-volatile memory. Proceedings of the VLDB Endowment,

7(10):865–876, 2014.

[45] Q. Wei, J. Chen, and C. Chen. Accelerating file system

metadata access with byte-addressable nonvolatile memory.

ACM Transactions on Storage (TOS), 11(3):12, 2015.

[46] X. Wu and A. L. N. Reddy. SCMFS: A file system for storage

class memory. In Proceedings of the ACM/IEEE SC2011

Conference, 2011.

[47] Y. Zhang and S. Swanson. A study of application performance

with non-volatile main memory. In Proceedings of the 31st In-

ternational Conference on Massive Stroage Systems (MSST),

2015.

[48] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S.

Yang, B. W. Zhao, and S. Singh. Torturing databases for fun

and profit. In Proceedings of the 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 14),

pages 449–464, Oct. 2014.

398

